PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photocatalytic TiO2 Nanostructures Developed on the Grade 2 Ti Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research focused on TiO2 nanostructures environmental applications due to the special characteristics that displayed degradation of the organic compounds into environmentally friendly products through exposure to UV light. The protocol behind obtaining the nanostructures involved the use of a Ti material exposed to alkaline treatment and advanced oxidation using NaOH solution and acetone. These studied nanostructures were analyzed extensively by using methods such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) for characterizing the elements, compounds and morphological properties of the material. These differences in morphology is attributed to different NaOH solution concentrations. The Ti sheets were immersed into NaOH and acetone mixed solutions for 72 hours. The best results were recorded by using 30% NaOH solution. After obtaining the 3D structures, which improve specific surface and contact area with the environment, the samples were tested under UV light in order to degrade methylene blue in order to determine their photocatalytic performance.
Twórcy
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
autor
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Department of Materials Processing and Ecometallurgy, 313 Splaiul Independentei, 060042, Bucharest, Romania
Bibliografia
  • [1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (5358), 37-38 (1972). DOI: https://doi.org/10.1038/238037A0
  • [2] M. Yao, J. Zhao, S. Lv, K. Lu, Preparation and hydrogenation of urchin-like titania using a one-step hydrothermal method, Ceramics International 43, 6925-6931 (2017). DOI: https://doi.org/10.1016/j.ceramint.2017.02.115
  • [3] J. Tolia, M. Chakraborty, Z. Murthy, Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles, Polish Journal of Chemical Technology 14, 16-21 (2012). DOI: https://doi.org/10.2478/v10026-012-0065-6
  • [4] M.B. Mukhlish, F. Najnin, M.M. Rahman, M. Uddin, Photocatalytic degradation of different dyes using TiO2 with high surface area: a kinetic study, Journal of Scientific Research 5, 301-314 (2013). DOI: https://doi.org/10.3329/jsr.v5i2.11641
  • [5] Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating, ACS Nano 6, 5060-5069 (2012). DOI: https://doi.org/10.1021/nn300679d
  • [6] H. Zhang, X. Liu, Y. Li, Q. Sun, Y. Wang, B.J. Wood, Vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties, Journal of Materials Chemistry 22, 2465-2472 (2012). DOI: https://doi.org/10.1021/nl802096a
  • [7] A. Kusior, K. Kollbek, K. Kowalski, M. Borysiewicz, T. Wojciechowski, A. Adamczyk, Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique, Applied Surface Science 380, 193-202 (2016). DOI: https://doi.org/10.1016/j.apsusc.2016.01.204
  • [8] N.C. Jeong, O.K. Farha, J.T. Hupp, A convenient route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells, Langmuir 27, 1996-1999 (2011). DOI: https://doi.org/10.1021/la104297s
  • [9] S.Z. Zaidi, C. Harito, D.V. Bavykin, A.S. Martins, B. Yuliarto, F.C. Walsh, Photocatalytic degradation of methylene blue dye on reticulated vitreous carbon decorated with electrophoretically deposited TiO2 nanotubes, Diamond and Related Materials 109, 108001 (2020). DOI: https://doi.org/10.1016/j.diamond.2020.108001
  • [10] S.Z., Zaidi, C. Harito, D.V. Bavykin, A.S. Martins, B. Yuliarto, F.C. Walsh, C. Ponce de León, Photocatalytic degradation of methylene blue dye on reticulated vitreous carbon decorated with electrophoretically deposited TiO2 nanotubes, Diamond and Related Materials 109, 108001 (2020). DOI: https://doi.org/10.1016/j.diamond.2020.108001
  • [11] A.S. Attar, S. Mirdamadi, F. Hajiesmaeilbaigi, M.S. Ghamsari, Growth of TiO2 nanorods by sol-gel template process, Journal of Materials Science and Technology 23 (5), 611-613 (2007).
  • [12] S. Dong, H. Wang, L. Gu, X. Zhou, Z. Liu, P. Han, Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries, Thin Solid Films 519, 5978-5982 (2011). DOI: https://doi.org/10.1016/j.tsf.2011.03.048
  • [13] L. Qin, Q. Chen, R. Lan, R. Jiang, X. Quan, B. Xu, Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays, Journal of Materials Science & Technology 31, 1059-1064 (2015). DOI: https://doi.org/10.1016/j.jmst.2015.07.012
  • [14] Z.-H. Liu, X.-J. Su, G.-L. Hou, S. Bi, Z. Xiao, H.-P. Jia, Hierarchical TiO2 nanorod array for dye-sensitized solar cells, Materials Letters 89, 309-311 (2013).
  • [15] L.B. Arruda, C.M. Santos, M.O. Orlandi, W.H. Schreiner, P.N. Lisboa-Filho, Formation and evolution of TiO2 nanotubes in alkaline synthesis, Ceramics International 41, 2884-2891 (2015). DOI: https://doi.org/10.1016/j.ceramint.2014.10.113
  • [16] A. Fernandez, G. Lassaletta, V. Jimenez, A. Justo, A. Gonzalez-Elipe, J.-M. Herrmann, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel), Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental 7, 49-63 (1995). DOI: https://doi.org/10.1016/0926-3373(95)00026-7
  • [17] J. Matos, J. Laine, J.-M. Herrmann, D. Uzcategui, J. Brito, Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation, Applied Catalysis B: Environmental 70, 461-469 (2007). DOI: https://doi.org/10.1016/j.apcatb.2005.10.040
  • [18] Y. Chen, K. Wang, L. Lou, Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry 163, 281-287 (2004). DOI: https://doi.org/10.1016/j.jphotochem.2003.12.012
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8570328f-e7ee-4485-8f77-3022014fd889
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.