Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the concept of using algorithms for reducing the dimensions of finite-difference equations of two-dimensional (2D) problems, for second-order partial differential equations. Solutions are predicted as two-variable functions over the rectangular domain, which are periodic with respect to each variable and which repeat outside the domain. Novel finite-difference operators, of both the first and second orders, are developed for such functions. These operators relate the value of derivatives at each point to the values of the function at all points distributed uniformly over the function domain. A specific feature of the novel operators follows from the arrangement of the function values as well as the values of derivatives, which are rectangular matrices instead of vectors. This significantly reduces the dimensions of the finite-difference operators to the numbers of points in each direction of the 2D area. The finite-difference equations are created exemplary elliptic equations. An original iterative algorithm is proposed for reducing the process of solving finite-difference equations to the multiplication of matrices.
Rocznik
Tom
Strony
1535--1541
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Cracow University of Technology, Institute on Electromechanical Energy Conversion, ul. Warszawska 24, 31-155 Cracow, Poland
Bibliografia
- [1] R.D. Richtmayer and K.W. Morton, Difference methods for initial-value problems, J. Willey & Sons, New York, (1967).
- [2] R.L. Burden and J.D. Faires, Numerical analysis, PWS-Kent Pub. Comp., Boston, (1985).
- [3] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics, Second Edition, Philadelphia, (2004).
- [4] R.J. LeVeque, Finite difference methods for ordinary and partial differential equations, Society for Industrial and Applied Mathematics, Second Edition, Philadelphia, (2007).
- [5] Z. Fortuna, B. Macukow, and J. Wąsowski, Numerical methods, [in Polish], WNT, Warsaw, (2009).
- [6] R.S. Esfandiari, Numerical Methods for Engineers and Scientists Using MATLAB®”, CRC Press, Taylor & Francis Group, (2017).
- [7] K. Zakrzewski and M. Łukaniszyn, “Application of 3-d finite difference method for inductance calculation of air-core coils system”, Compel-Int. J. Comp. Math. Electr. Electron. Eng. 13 (1), 89–92 (1994).
- [8] A. Demenko and J. Sykulski, “On the equivalence of finite difference and edge element formulations in magnetic field analysis using vector potential”, Compel-Int. J. Comp. Math. Electr. Electron. Eng. 33 (1–2), 47–55 (2014).
- [9] J. Huang, W. Liao, and Z. Li, “A multi-block finite difference method for seismic wave equation in auxiliary coordinate system with irregular fluid–solid interface”, Eng. Comput. 35 (1), 334–362 (2018).
- [10] M. Chapwanya, R. Dozva, and G. Gift Muchatibaya, “A nonstandard finite difference technique for singular Lane-Emden type equations”, Eng. Comput. 36 (5), 1566–1578 (2019).
- [11] M. Mawlood, S. Basri, W. Asrar, A. Omar, A. Mokhtar, and M. Ahmad, “Solution of Navier-Stokes equations by fourth-order compact schemes and AUSM flux splitting”, Int. J. Numer. Methods Heat Fluid Flow 16 (1), 107–120 (2006).
- [12] M. Ivanovic, M. Svicevic, and S. Savovic, (2017), “Numerical solution of Stefan problem with variable space grid method based on mixed finite element/finite difference approach”, Int. J. Numer. Methods Heat Fluid Flow 27 (12), 2682–2695 (2017).
- [13] T.J. Sobczyk and M. Radzik, “A new approach to steady state analysis of nonlinear electrical circuits”, Compel-Int. J. Comp. Math. Electr. Electron. Eng. 36 (2), 716–728 (2017).
- [14] T.J. Sobczyk and M. Radzik, “Application of novel discrete differential operator of periodic function to study electromechanical interaction”, Bull. Pol. Ac.: Tech. 66 (5), 645–653 (2018).
- [15] T.J. Sobczyk and M. Radzik, “Improved algorithm for periodic steady state analysis in electromagnetic devices”, Bull. Pol. Ac.: Tech. 67 (5), 863–869 (2019).
- [16] T.J. Sobczyk, “Algorithm for determining two-periodic steady-states in AC machines directly in time domain”, Arch. Electr. Eng. 65, 575–583 (2016).
- [17] M. Jaraczewski and T.J. Sobczyk, “Numerical tests of novel finite difference operator for solving 1D boundary-value problems”, 15th Selected Issues of Electrical Engineering and Electronics (WZEE), Zakopane, IEEE Explore, (2019).
- [18] T.J. Sobczyk and M. Jaraczewski, “Application of discrete differential operators of periodic functions to solve 1D boundary-value problems”, Compel-Int. J. Comp. Math. Electr. Electron. Eng. 39 (3), 885–897 (2020), DOI: 10.1108/COMPEL-11-2019-0444.
- [19] T.J. Sobczyk, “2D discrete differential operators for periodic functions”, 15th Selected Issues of Electrical Engineering and Electronics (WZEE), Zakopane, IEEE Explore, (2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-856d4faf-a8c4-4975-9568-7c1182e98fc9