PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rozdział mieszanin gazowych przy wykorzystaniu ciekłych membran na podłożu ceramicznym impregnowanym cieczami jonowymi

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Separation of gas mixture on ionic liquid membranes with ceramic support
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono przegląd prac dotyczących rozdziału mieszanin gazowych, a w szczególności wydzielania CO2 z gazów, przy wykorzystaniu ciekłych membran na podłożu ceramicznym impregnowanym cieczami jonowymi (SILM). Omówiono rodzaje podłoża ceramicznego stosowanego w membranach SILM, a także wpływ struktury podłoża na jakość membrany. Pokazano stosowane sposoby nanoszenia (impregnacji) cieczy jonowej na podłoże ceramiczne.
EN
The paper presents the review of works concerning gas mixture separation, in particular a CO2 removal from gases, using liquid membrane on ceramic support impregnated with ionic liquids (SILM). The type of ceramic support used in SILM membranes, as well as the influence of the support structure on the quality of the membrane was discussed. The methods used to impregnate the ionic liquid into the ceramic support were shown.
Twórcy
autor
  • Instytut Inzynierii Chemicznej PAN, ul. Bałtycka 5, 44-100 Gliwice
  • Politechnika Opolska, Wydział Inzynierii Produkcji i Logistyki, ul. Gen. Sosnkowskiego 31, 45-272 Opole
  • Instytut Inzynierii Chemicznej PAN, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw C., 2011. Post-combustion CO2 cap- ture with chemical absorption: a state-of-the-art review, Chem. Eng. Res. Des., 89 (9), 1609– 1624.
  • [2] Oyenekan B.A., Rochelle G.T., 2006. Energy performance of stripper configurations for CO2 capture by aqueous amines, Ind. Eng. Chem. Res., 45 (8), 2457–2464.
  • [3] Ho M.T., Allinson G.W., Wiley D.E., 2008. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption, Ind. Eng. Chem. Res., 47 (14), 4883–4890.
  • [4] Powell C.E., Qiao G.G., 2006. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, J. Membr. Sci., 279 (1–2), 1–49.
  • [5] Favre E., 2011. Membrane processes and postcombustion carbon dioxide capture: challenges and prospects, Chem. Eng. J., 171 (3), 782–793.
  • [6] Ho M.T., Allinson G.W., Wiley D.E., 2008. Reducing the cost of CO2 capture from flue gases using membrane technology, Ind. Eng. Chem. Res., 47 (5), 1562–1568.
  • [7] Hagg M.B., Lindbrathen A., 2005. CO2 capture from natural gas fired power plants by using membrane technology, Ind. Eng. Chem. Res., 44 (20), 7668–7675.
  • [8] Bredesen R., Jordal K., Bolland A., 2004. High-temperature membranes in power generation with CO2 capture, Chem. Eng. Process., 43 (9), 1129–1158.
  • [9] Hossain M.M., de Lasa H.I., 2008. Chemical-looping combustion (CLC) for inherent CO2 sepa- rations – a review, Chem. Eng. Sci., 63 (18), 4433–4451.
  • [10] Tuinier M.J., Annaland M.V., Kramer G.J., Kuipers J.A.M., 2010. Cryogenic CO2 capture using dynamically operated packed beds, Chem. Eng. Sci., 65 (1), 114–119.
  • [11] Bara J.E., Camper D.E., Gin D.L., Noble R.D., 2010. Room-temperature ionic liquids and com- posite materials: platform technologies for CO2 capture, Acc. Chem. Res., 43 (1), 152–159.
  • [12] Karadas F., Atilhan M., Aparicio S., 2010. Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening, Energy Fuels, 24, 5817–5828.
  • [13] Ramdin M., de Loos T.W., Vlugt T.J.H., 2012. State-of-the-art of CO2 capture with ionic liq- uids, Ind. Eng. Chem. Res., 51 (24), 8149–8177.
  • [14] Hasib-ur-Rahman M., Siaj M., Larachi F., 2010. Ionic liquids for CO2 capture – development and progress, Chem. Eng. Process., 49 (4), 313–322.
  • [15] Li J.R., Ma Y.G., McCarthy M.C., Sculley J., Yu J.M., Jeong H.K., Balbuena P.B., Zhou H. C., 2011. Carbon dioxide capture-related gas adsorption and separation in metal-organic frame- works, Coord. Chem. Rev., 255 (15–16), 1791–1823.
  • [16] Duc N.H., Chauvy F., Herri J.M., 2007. CO2 capture by hydrate crystallization – a potential solution for gas emission of steelmaking industry, Energy Convers.Manag., 48 (4), 1313–1322.
  • [17] Lee H.J., Lee J.D., Linga P., Englezos P., Kim Y.S., Lee M.S., Kim Y.D., 2010. Gas hydrate formation process for pre-combustion capture of carbon dioxide, Energy, 35 (6), 2729–2733.
  • [18] Baker R.W., Lokhandwala K., 2008. Natural gas processing with membranes: an overview, Ind. Eng. Chem. Res., 47 (7), 2109–2121.
  • [19] Baltus R.E., Counce R.M., Culbertson B.H., Luo H., Depaoli D.W., Dai S., Duckworth D.C., 2005. Examination of the potential of ionic liquids for gas separations, Sep. Sci. Technol., 40, 525– 541.
  • [20] Merkel T.C., Lin H., Wei X., Baker R., 2010. Power plant post-combustion carbon dioxide capture: An opportunity for membranes, J. Membr. Sci., 359 (1–2), 126–139.
  • [21] Haber F., Klemensiewicz Z., 1909. Über elektrische Phasengrenzkräfte, Z. Phys. Chem., 67, 385-431.
  • [22] Wittenberg J. B., 1959. Oxygen transport – a new function for myoglobin, Biol. Bull., 117, 402- 403.
  • [23] Schollander P.F., 1960. Oxygen transport through hemoglobin solutions. Science, 131, 585-590.
  • [24] Bloch R., Finkelstein A., Kedem O., Vofsi D., 1967. Metal-Ion Separation by Dialysis through Solvent Membranes, Ind. Eng. Chem. Process Design Develop., 6, 231.
  • [25] Norman Li N., 1968. Separating hydrocarbons with liquid membranes, US patent 3410794.
  • [26] Parhi P.K., 2013. Supported liquid membrane principle and its practices: a short review, J. Chem., (2013), 11.
  • [27] Bernardo P., Drioli E., Golemme G., 2009. Membrane gas separation: a review/state of the art, Ind. Eng. Chem. Res., 48 (10), 4638–4663.
  • [28] Rogers R.D., Seddon K.R., 2003. Ionic Liquids-Solvents of the Future?, Science, 302, 792-793.
  • [29] Stark A., Seddon K.R., 2007.Kirk-Othmer Encyclopaedia of Chemical Technology, ed. A. Seidel, John Wiley & Sons, New Jersey, 26, 836-920.
  • [30] Hallett J.P., Welton T., 2011. Room-temperature ionic liquids: solvents for synthesis and cataly- sis, Chem. Rev. 111, 3508-3576.
  • [31] Walden P., 1914.Molecular weights and electrical conductivity of several fused salts, Bull. Acad. Imper. Sci. St. Petersbourg, 8, 405-422.
  • [32] Graenacher C., 1934. Cellulose solution, US Patent 1943176.
  • [33] Freemantle M., 2009. An Introduction to Ionic Liquids, RSC Publishing, Cambridge.
  • [34] Bejan D., Ignatev N., Willner H., 2010. New ionic liquids with the bis[bis(pentafluoroethyl)phosphinyl]imide anion [(C2F5)2P(O)]2N- Synthesis and characteriza- tion, J. Fluor. Chem., 131, 325-332.
  • [35] Yoshida Y., Baba O., Saito G., 2007. Ionic Liquids Based on Dicyanamide Anion: Influence of Structural Variations in Cationic Structures on Ionic Conductivity, J. Phys. Chem. B, 111, 4742- 4749.
  • [36] Freire M.G., Neves C.M.S.S., Marrucho I.M., Coutinho J.A.P., Fernandes A.M., 2010. Hydroly- sis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liq- uids, J. Phys. Chem. A., 114, 3744-3749.
  • [37] Zhao Z., Dong H., Zhang X., 2012. The research progress of CO2 capture with ionic liquids, Chinese J. Chem. Eng., 20 (1), 120–129.
  • [38] Bates E.D., Mayton R.D., Ntai I., Davis Jr J.H.., 2002. CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc., 124, 926–927.
  • [39] Cadena C., Anthony J.L., Shah J.K., Morrow T.I., Brennecke J.F., Maginn E.J., 2004. Why is CO2 so soluble in imidazolium-based ionic liquids, J. Am. Chem. Soc., 126, 5300–5308.
  • [40] Shiflett M.B., Kasprzak D.J., Junk C.P., Yokozeki A., 2008. Phase behavior of carbon dioxide + [bmim][Ac] mixtures, J. Chem. Thermodyn., 40 (1), 25–31.
  • [41] Yokozeki A., Shiflett M.B., Junk C.P., Grieco L.M., Foo T., 2008. Physical and chemical ab- sorptions of carbon dioxide in room-temperature ionic liquids, J. Phys. Chem. B., 112 (51), 16654–16663.
  • [42] Shiflett M.B., Niehaus A.M.S., Elliott B.A., Yokozeki A., 2012. Phase behavior of N2O and CO2 in room-temperature ionic liquids [bmim][Tf2N], [bmim][BF4], [bmim][N(CN)2], [bmim][Ac], [eam][NO3], and [bmim][SCN], Int. J. Thermophys., 33, 412–436.
  • [43] Neves L.A., Crespo J.G., Coelhoso I.M., 2010. Gas permeation studies in supported ionic liquid membranes, J. Membr. Sci., 357, 160– 170.
  • [44] Scovazzo P., Kieft J., Finan D.A., Koval C., DuBois D., Noble R.D., 2004. Gas separation using non-Hexafluorophosphate [PF6] anion supported ionic liquid membranes, J. Membr. Sci., 238, 57– 63.
  • [45] Luis P., Neves L.A., Afonso C.A., Coelhoso I.M., Crespo J.G., Garea A., Irabien A., 2009. Fa- cilitated transport of CO2 and SO2 through supported ionic liquid membranes (SILMs), Desalina- tion, 245, 485– 493.
  • [46] Albo J., Santos E., Neves L.A., Simeonov S.P., Afonso C.A.M., Crespo J.G., Irabien A., 2012. Separation performance of CO2 through Supported Magnetic Ionic Liquid Membranes (SMILMs), Sep. Purif. Technol., 97, 26–33.
  • [47] Santos E., Albo J., Daniel C.I., Portugal C.A.M., Crespo J.G., Irabien A., 2013. Permeability modulation of supported magnetic ionic liquid membranes (SMILMs) by an external magnetic field, J. Membr. Sci., 430, 56–61.
  • [48] Santos E., Albo J., Irabien A., 2014. Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: Influence of the temperature, J. Membr. Sci., 452, 277– 283.
  • [49] Albo J., Yoshioka T., Tsuru T., 2014. Porous Al2O3/TiO2 tubes in combination with 1-ethyl-3- methylimidazolium acetate ionic liquid for CO2/N2 separation, Sep. Purif. Technol., 122, 440– 448.
  • [50] Bernard P., Drioli E., Golemme G., 2009. Membrane gas separation: A review/state of the art, Ind. Eng. Chem. Res., 48, 4638– 4663.
  • [51] Rongwong W., Boributh S., Assabumrungrat S., Laosiripojana N., Jiraratananon R., 2012. Si- multaneous absorption of CO2 and H2S from biogas by capillary membrane contactor, J. Membr. Sci., 392–393, 38– 47.
  • [52] Kaldis S.P., Skodras G., Grammelis P., Sakellaropoulos G.P., 2007. Application of polymer membrane technology in coal combustion processes, Chem. Eng. Commun., 194 (3), 322– 333.
  • [53] Lee Y., Noble R.D., Yeom B.Y., Park Y.I., Lee K.H., 2001. Analysis of CO2 removal by hollow fiber membrane contactors, J. Membr. Sci., 194 (1), 57– 67.
  • [54] Albo J., Irabien A., 2012. Non-dispersive absorption of CO2 in parallel and cross-flow membrane modules using EMISE, J. Chem. Technol. Biotechnol., 87 (10), 1502–1507.
  • [55] Albo J., Luis P., Irabien A., 2011. Absorption of coal combustion flue gases in ionic liquids using different membrane contactors, Desalin. Water Treat., 27, 54–59.
  • [56] Albo J., Luis P., Irabien A., 2010. Carbon Dioxide Capture from Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate, Ind. Eng. Chem. Res., 2010, 49, 11045–11051.
  • [57] Al Marzouqi M.H., Abdulkarim M.A., Marzouk S.A., El-Naas M.H., Hasanain H. M., 2005. Facilitated transport of CO2 through immobilized liquid membrane, Ind. Eng. Chem. Res., 44 (24), 9273–9278.
  • [58] Ito A., Duan S.H., Ikenori Y., Ohkawa A., 2001. Permeation of wet CO2/CH4 mixed gas through a liquid membrane supported on surface of a hydrophobic microporous membrane, Sep. Purif. Technol., 24 (1–2), 235–242.
  • [59] Luis P., Van Gerven T., Van der Bruggen B., 2012. Recent developments in membrane-based technologies for CO2 capture, Progress Energy Combust. Sci., 38 (3), 419–448.
  • [60] Bara J.E., Carlisle T.K., Gabriel C.J., Camper D., Finotello A., Gin D.L., Noble R.D., 2009. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Ind. Eng. Chem. Res., 48, 2739.
  • [61] Bara J.E., Gabriel C.J., Carlisle T.K., Camper D.E., Finotello A., Gin D.L., Noble R.D., 2009. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes, Chem. Eng. J., 147, 43.
  • [62] Scovazzo P., 2009. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, J. Membrane Sci., 343, 199.
  • [63] Scovazzo P., Kieft J., Finan D.A., Koval C., DuBois D., Noble R., 2004. Gas separations using non-hexafluorophosphate [PF6](−) anion supported ionic liquid membranes, J. Membrane Sci., 238, 57-63.
  • [64] Pennline H.W., Luebke D.R., Jones K.L., Myers C.R., Morsi B.I., Heintz Y.J., Ilconich J.B., 2008. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources, Fuel Process.Technol., 89, 897.
  • [65] Ilconich J., Myers C., Pennline H., Luebke D., 2007. Experimental investigation of the perme- ability and selectivity of supported ionic liquid membranes for CO2/He separation at tempera- tures up to 125 C, J. Membrane Sci., 298, 41.
  • [66] Myers C., Pennline H., Luebke D., Ilconich J., Dixon J.K., Maginn E.J., Brennecke J.F., 2008. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes, J. Membrane Sci., 322, 28.
  • [67] Hanioka S., Maruyama T., Sotani T., Teramoto M., Matsuyama H., Nakashima K., Hanaki M., Kubota F., Goto M., 2008. CO2 separation facilitated by task-specific ionic liquids using a sup- ported liquid membrane, J. Membrane Sci., 314, 1.
  • [68] Hernandez-Fernandez F.J., de los Rios A.P., Tomas-Alonso F., Palacios J.M., Villora G., 2009. Preparation of supported ionic liquid membranes: influence of the ionic liquid immobilization method on their operational stability, J.
  • [69] Bara J.E., Hatakeyama E.S., Gin D.L., Noble R.D., 2008. Improving CO2 permeability in polym- erized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid, Polym. Adv. Technol., 19, 1415.
  • [70] Bara J.E., Lessmann S., Gabriel C.J., Hatakeyama E.S., Noble R.D., Gin D.L., 2007. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes, Ind. Eng. Chem. Res., 46, 5397.
  • [71] Simons K., Nijmeijer K., Bara J.E., Noble R.D., Wessling M., 2010. How do polymerized room- temperature ionic liquid membranes plasticize during high pressure CO2 permeation, J. Mem- brane Sci., 360, 202.
  • [72] Hudiono Y.C., Carlisle T.K., Bara J.E., Zhang Y.F., Gin D.L., Noble R.D., 2010. A three- component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, J. Membrane Sci., 350, 117.
  • [73] Gan Q., Rooney D., Xue M.L., Thompson G., Zou Y.R., 2006. An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes, J. Membrane Sci. 280, 948.
  • [74] Scovazzo P., Havard D., McShea M., Mixon S., Morgan D., 2009. Long-term, continuous mixed- gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes, J. Membrane Sci. 327, 41.
  • [75] Huang J.F., Luo H.M., Liang C.D., Jiang D.E., Dai S., 2008. Advanced liquid membranes based on novel ionic liquids for selective separation of olefin/paraffin via olefin-facilitated transport, Ind. Eng. Chem. Res. 47, 881.
  • [76] Fortunato R., Afonso C.A.M., Reis M.A.M., Crespo J.G., 2004. Supported liquid membranes using ionic liquids: study of stability and transport mechanisms, J. Membrane Sci. 242, 197.
  • [77] Bara J.E., Gin D.L., Noble R.D., 2008. Effect of anion on gas separation performance of poly- mer-room-temperature ionic liquid composite membranes, Ind. Eng. Chem. Res. 47, 9919.
  • [78] Noble R., Gin D.L., 2011. Perspective on ionic liquids and ionic liquid membranes, J. Mem- brane Sci. 369, 1.
  • [79] Lozano L.J., Godinez C., De los Rios A.P., Hernandez-Fernandez F.J., Sanchez-Segado S., Alguacil F.J., 2011. Recent advances in supported liquid membrane technology, J. Membrane Sci. 376,. 1.
  • [80] Scovazzo P., Visser A.E., Davis J.H., Rogers R.D., Koval C.A., DuBois D.L., Noble R.D., 2002. Supported ionic liquid membranes and facilitated ionic liquid membranes, Ionic Liquids, 818, 69–87.
  • [81] Barghi S.H., Adibi M., Rashtchian D., 2010. An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina mem- brane: investigation of temperature fluctuations effects, J. Membr. Sci., 362, 346–352.
  • [82] Robeson L.M., 2008. The upper bound revisited, J. Membr. Sci., 320, 390–400.
  • [83] Kreiter R., Overbeek J.P., Correia L.A., Vente J.F., 2011. Pressure resistance of thin ionic liquid membranes using tailored ceramic supports, J. Membr. Sci., 370, 175–178.
  • [84] Jong-Ho M., Yong-Jin P., Min-Bae K., Sang-Hoon H., Chang-Ha L., 2005. Permeation and separation of a carbon dioxide/nitrogen mixture in a methyltriethoxysilane templating sil- ica/alumina composite membrane, J. Membr. Sci., 250, 195– 205.
  • [85] Close J.J., Farmer K., Moganty S.S., Baltus R.E., 2012. CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: Effect of the support on separation performance J. Membr. Sci., 390–391, 201–210.
  • [86] Albo J., Tsuru T., 2014. Thin Ionic Liquid Membranes Based on Inorganic Supports with Differ- ent Pore Sizes, Ind. Eng. Chem. Res., 53, 8045−8056.
  • [87] Scovazzo P., 2009. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, J. Membr. Sci., 343, 199– 211.
  • [88] Banu L.A., Wang D., Baltus R.E., 2013. Effect of ionic liquid confinement on gas separation characteristics, Energy Fuels, 27, 4161– 4166. Membrane Sci., 341, 172.
  • [89] Hojniak S.D., Silverwood I.P., Khan A.L., Vankelecom I.F.J., Dehaen W., Kazarian S.G., Bin- nemans K., 2014. Highly Selective Separation of Carbon Dioxide from Nitrogen and Methane by Nitrile/Glycol-Difunctionalized Ionic Liquids in Supported Ionic Liquid Membranes (SILMs), J. Phys. Chem. B, 118, 7440−7449.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-856bd6a8-96df-4934-8e14-4f7f6c5b052a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.