PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microgravimetric Studies of Selenium Electrodeposition Onto Different Substrates

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mikrograwimetryczna analiza procesu elektrochemicznego procesu osadzania selenu na różnych podłożach
Języki publikacji
EN
Abstrakty
EN
The mechanism of selenium electrodeposition from sulfuric acid solution on different substrates was studied with the electrochemical techniques. The cyclic voltammetry was combined with the quartz crystal microbalance technique to analyze selenium deposition process. The electrochemical reduction of selenous acid on gold, silver and copper electrodes was investigated. It was found that reduction of selenous acid is a very complex process and it strongly depends from the applied substrate. The voltammetric measurements indicate the range of potentials in which the process of reduction of selenous acids on the applied substrate is possible. Additionally, the microgravimetric data confirm the deposition of selenium and they reveal the mechanism of the deposition process.
PL
Przedstawione w niniejszej pracy wyniki badań opisują mechanizm elektrochemicznego osadzania selenu z roztworów siarczanowych na różnych podłożach. W celu dokładnej analizy zachodzących procesów elektrodowych w badaniach zastosowano technikę cyklicznej woltamperometrii połączoną z elektrochemiczną mikrowagą kwarcową. W pracy porównano procesy redukcji kwasu selenowego(IV) na elektrodach złotej, srebrnej i miedzianej. Dzięki zastosowanym technikom badawczym jednoznacznie określono zakres osadzania się selenu na wybranych podłożach oraz wskazano możliwy mechanizm przebiegających reakcji elektrodowych.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] F. A. Devillanova, W.-W. Du Mont, Royal Society of Chemistry (Great Britain) Handbook of chalcogen chemistry. Volume 1 new perspectives in sulfur, selenium and tellurium (2013).
  • [2] J. D. Woollins, R. Laitinen, Selenium and Tellurium Chemistry. From Small Molecules to Biomolecules and Materials. Springer, (2011).
  • [3] M. Bouroushian, SpringerLink (Online service) Electrochemistry of metal chalcogenides Monographs in electrochemistry (2010).
  • [4] V. S. Saji, C. W. Lee, Selenium electrochemistry. RSC Advances 3 (26), 10058-10077 (2013).
  • [5] J. Kohrle, R. Brigelius-Flohe, A. Bock, R. Gartner, O. Meyer, L. Flohe, Selenium in biology: Facts and medical perspectives. Biol Chem 381 (9-10), 849-864 (2000).
  • [6] F. Devillanova, Handbook of Chalcogen Chemistry. RSC Publishing, (2007).
  • [7] G. Hodes, J. Manassen, D. Cahen, Photoelectro-chemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 261 (5559), 403-404 (1976).
  • [8] A. Von Hippel, M. C. Bloom, The electroplating of metallic selenium. The Journal of Chemical Physics 18 (9), 1243-1251 (1950).
  • [9] H. K. Lin, Simultaneous oxidation and stripping for separating Se and Te from sulfur. Jom 48 (3), 50-52 (1996).
  • [10] P. C. Nascimento, C. L. Jost, L. M. de Carvalho, D. Bohrer, A. Koschinsky, Voltammetric determination of Se(IV) and Se(VI) in saline samples-Studies with sea-water, hydrothermal and hemodialysis fluids. Anal Chim Acta 648 (2), 162-166 (2009).
  • [11] N. M. Najafi, S. Seidi, R. Alizadeh, H. Tavakoli, Inorganic selenium speciation in environmental samples using selective electrodeposition coupled with electrothermal atomic absorption spectrometry. Spectrochimica Acta – Part B Atomic Spectroscopy 65 (4), 334-339 (2010).
  • [12] X. Y. Zhang, Y. Cai, J. Y. Miao, K. Y. Ng, Y. F. Chan, X. X. Zhang, N. Wang, Formation and phase transformation of selenium nanowire arrays in anodic porous alumina templates. J Cryst Growth 276 (3-4), 674-679 (2005).
  • [13] M. F. Cabral, H. B. Suffredini, V. A. Pedrosa, S. T. Tanimoto, S. A. S. Machado, Electrodeposition and characterization of thin selenium films modified with lead ad-atoms. Appl Surf Sci 254 (17), 5612-5617 (2008).
  • [14] S. Kumar, Synthesis and characterisation of selenium nanowires using template synthesis. J Exp Nanosci 4 (4), 341-346 (2009).
  • [15] F. A. Kröger, Cathodic deposition and characterization of metallic or semiconducting binary alloys or compounds. J Elec-trochem Soc 125 (12), 2028-2034 (1978).
  • [16] N. Myung, N. R. De Tacconi, K. Rajeshwar, Elec-trosynthesis of cadmium selenide films on a selenium-modified gold surface. Electrochemistry Communications 1 (1), 42-45 (1999).
  • [17] P. R. Żabiński, R. Kowalik, M. Piwowarczyk, Cobalt-tungsten alloys for hydrogen evolution in hot 8 M NaOH. Archives of Metallurgy and Materials 52 (4), 627-634 (2007).
  • [18] P. R. Żabiński, M. Górski, R. Kowalik, Influence of superimposed external magnetic fHiLD onto electrodeposition of co-Palloys for hydrogen evolution. Archives of Metallurgy and Materials 54 (4), 1157-1166 (2009).
  • [19] P. R. Żabiński, A. Franczak, R. Kowalik, Electro-catalytically active Ni-Re binary alloys electrodeposited with superimposed magnetic field. Archives of Metallurgy and Materials 57 (2), 495-501 (2012).
  • [20] P. R. Żabiński, K. Mech, R. Kowalik, Co-Mo and Co-Mo-Calloys deposited in a magnetic field of high intensity and their electrocatalytic properties. Archives of Metallurgy and Materials 57 (1), 127-133 (2012).
  • [21] K. Mech, P. R. Żabiński, M. Mucha, R. Kowalik, Electrodeposition of catalytically active Ni-Mo alloys. Archives of Metallurgy and Materials 58 (1), 227-229 (2013).
  • [22] T. S. Dobrovolska, K. Fitzner, Electrodepositon of Ag-Se coatings. Archives of Metallurgy and Materials 50 (4), 1017-1026 (2005).
  • [23] K. Mech, R. Kowalik, K. Fitzner, Electrochemical synthesis of tetragonal SnO2 phase. Archives of Metallurgy and Materials 56 (3), 659-663 (2011).
  • [24] M. Duda, R. Kowalik, K. Mech, P.R. Żabiński, Electrochemical deposition of CdS thin films from acid solutions. Rudyi Metale Nieżelazne 57 (9), 586-591 (2012).
  • [25] M. S. Kazacos, B. Miller, Studies in selenious acid reduction and CdSe film deposition. Journal of The Electrochemical Society 127 (4), 869-873 (1980).
  • [26] G. Pezzatini, F. Loglio, M. Innocenti, M.L. Foresti, Selenium(IV) electrochemistry on silver: A combined electrochemical quartz-crystal microbalance and cyclic voltammetric investigation. Collect Czech Chem C 68 (9), 1579-1595 (2003).
  • [27] R. Kowalik, K. Fitzner, Analysis of the mechanism for electrodeposition of the ZnSe phase on Cu substrate. Journal of Electroanalytical Chemistry 633 (1), 78-84 (2009).
  • [28] B. W. Gregory, J. L. Stickney, Electrochemical atomic layer epitaxy (ECALE). Journal of Electroanalytical Chemistry 300 (1-2), 543-561 (1991).
  • [29] L. P. Colletti, S. Thomas, E. M. Wilmer, J. L. Stickney, Thin layer electrochemical studies of ZnS, ZnSe, and ZnTe formation by electrochemical atomic layer epitaxy (ECALE). In, 235-244 1997.
  • [30] M. L. Foresti, G. Pezzatini, M. Cavallini, G. Aloisi, M. Innocenti, R. Guidelli, Electrochemical atomic layer epitaxy deposition of CdS on Ag(111): An electrochemical and STM investigation. Journal of Physical Chemistry B 102 (38), 7413-7420 (1998).
  • [31] L. P. Colletti, B. H. Flowers Jr, J. L. Stickney, Formation of thin films of CdTe, CdSe, and CdS by electrochemical atomic layer epitaxy. Journal of The Electrochemical Society 145 (5), 1442-1449 (1998).
  • [32] G. Pezzatini, S. Caporali, M. Innocenti, M. L. Foresti, Formation of ZnSe on Ag(111) by electrochemical atomic layer epitaxy. Journal of Electroanalytical Chemistry 475 (2), 164-170 (1999).
  • [33] F. Forni, M. Innocenti, G. Pezzatini, M. L. Foresti, Electrochemical aspects of CdTe growth on the face (111) of silver by ECALE. Electrochimica Acta 45 (20), 3225-3231 (2000).
  • [34] F. Loglio, M. Innocenti, A. Jarek, S. Caporali, I. Pasquini, M. L. Foresti Nickel sulfur thin films deposited by ECALE: Electrochemical, XPS and AFM characterization. Journal of Electroanalytical Chemistry 638 (1), 15-20 (2010).
  • [35] R. Kowalik, P. R. Żabiński, K. Fitzner, Electrode-position of ZnSe. Electrochimica Acta 53 (21), 6184-6190 (2008).
  • [36] C. Wei, N. Myung, K. Rajeshwar, A combined voltammetry and electrochemical quartz crystal microgravime-try study of the reduction of aqueous Se(IV) at gold. Journal of Electroanalytical Chemistry 375 (1-2), 109-115 (1994).
  • [37] T. E. Lister, J. L. Stickney, Formation of the first mono-layer of CdSE on Au(111) by electrochemical ALE. Appl Surf Sci 107, 153-160 (1996).
  • [38] B. M. Huang, T. E. Lister, J. L. Stickney, Seadlat-tices formed on Au(100), studies by LEED, AES, STM and electrochemistry. Surf Sci 392 (1-3), 27-43 (1997).
  • [39] Z. Fijałek, K. Sarna, P. Suchocki, B. A. Fitak, Polarographic and voltammetric studies of selol a selenino-glyceride compound. Chemia Analityczna 43 (5), 833-841 (1998).
  • [40] T. A. Sorenson, T. E. Lister, B. M. Huang, J. L. Stickney, Comparison of atomic layers formed by elec-trodeposition of selenium and tellurium. Scanning tunneling microscopy studies on Au(100) and Au(111). Journal of The Electrochemical Society 146 (3), 1019-1027 (1999).
  • [41] P. Zuman, G. Somer, Polarographic and voltammetric behavior of selenious acid and its use in analysis. Talanta 51 (4), 645-665 (2000).
  • [42] M. C. Santos, S. A. S. Machado, Microgravimetric, rotating ring-disc and voltammetric studies of the underpoten-tial deposition of selenium on polycrystalline platinum electrodes. Journal of Electroanalytical Chemistry 567 (2), 203-210 (2004).
  • [43] G. Jarzabek, Z. Kublik, Cyclic and stripping voltam-metry of Se(+4) and Se(-2) at carbon electrodes in acid solutions. Journal of Electroanalytical Chemistry 114 (2), 165-177 (1980).
  • [44] R. Kowalik, F. Logilo, M. Innocenti, M. L. Foresti, Electrochemical Atomic Layer Epitaxy of compound semiconductors on copper single crystals. In: 4th International Workshop on Electrodeposited Nanostructures, 16-18 March Dresden, Germany, 16-18 March 2006.
  • [45] M. Bouroushian, T. Kosanovic, Z. Loizos, N. Spyrellis, On a thermodynamic description of Se(IV) elec-troreduction and CdSe electrolytic formation onNi, Ti and Pt cathodes in acidic aqueous solution. Electrochemistry Communications 2 (4), 281-285 (2000).
  • [46] M. Bouroushian, Z. Loizos, N. Spyrellis, Electrocrystallization of CdSe upon various substrates. Structural arrangement and photoelectrochemical performance. Appl Surf Sci 156 (1), 125-134 (2000).
  • [47] M. Bouroushian, J. Charoud-Got, Z. Loizos, N. Spyrellis, G. Maurin, Structure and properties of CdSe and CdSexTe1-x electrolytic deposits on Ni and Ti cathodes: Influence of the acidic bathpH. Thin Solid Films 381 (1), 39-47 (2001).
  • [48] S. Cattarin, F. Furlanetto, M. M. Musiani, Ca-thodic electrodeposition of Se on Ti electrodes. Journal of Elec-troanalytical Chemistry 415 (1-2), 123-132 (1996).
  • [49] S. Cattarin, M. Musiani, Electrodeposition of Se on Ti impedance and photoelectrochemical study of passivation phenomena. Journal of Electroanalytical Chemistry 437 (1-2), 85-92 (1997).
  • [50] G. Riveros, H. Gómez, R. Henŕiquez, R. Schrebler, R. E. Marotti, E. A. Dalchiele, Electrodeposition and characterization of ZnSe semiconductor thin films. Solar Energy Materials and Solar Cells 70 (3), 255-268 (2001).
  • [51] C. Natarajan, M. Sharon, C. Lévy-Clément, M. Neumann-Spallart, Electrodeposition of zinc selenide. Thin Solid Films 237 (1-2), 118-123 (1994).
  • [52] Y. Lai, F. Liu, J. Li, Z. Zhang, Y. Liu, Nucle-ation and growth of selenium electrodeposition onto tin oxide electrode. Journal of Electroanalytical Chemistry 639 (1-2), 187-192 (2010).
  • [53] L. Montčs, R. Hérino, Luminescence and structural properties of porous silicon with ZnSe intimate contact. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 69, 136-141 (2000).
  • [54] L. Montčs, F. Muller, R. Hérino, Localized photo-assisted electro-deposition of zinc selenide into p-type porous silicon. J Porous Mat 7 (1), 77-80 (2000).
  • [55] Y. A. Ivanova, D. K. Ivanou, E. A. Streltsov, Electrodeposition of PbSe onto n-Si(1 0 0) wafers. Electrochimica Acta 53 (15), 5051-5057 (2008).
  • [56] G. Jarząbek, Z. Kublik, Cyclic and stripping voltammetry of Se(+4) and Se(-2) at the HMDE in acidic media. Journal of Electroanalytical Chemistry 137 (2), 247-259 (1982).
  • [57] A. M. Espinosa, M. L. Tascón, M. D. Vázquez, P. S. Batanero, Electroanalytical study of selenium(+IV) at a carbon paste electrode with electrolytic binder and elec-troactive compound incorporated. Electrochimica Acta 37 (7), 1165-1172 (1992).
  • [58] T. E. Lister, B. M. Huang, R. D. HerrickIi, J. L. Stickney, Electrochemical formation of Se atomic layers on Au(100). Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 13 (3), 1268-1273 (1995).
  • [59] R. W. Andrews, D. C. Johnson, Voltammetric deposition and stripping of selenium(IV) at a rotating gold-disk electrode in 0.1 M perchloric acid. Analytical Chemistry 47 (2), 294-299 (1975).
  • [60] M. Alanyalioglu, U. Demir, C. Shannon, Electrochemical formation of Se atomic layers on Au(111) surfaces: The role of adsorbed selenate and selenite. Journal of Electro-analytical Chemistry 561 (SUPPL. 1), 21-27 (2004).
  • [61] G. R. Salazar-Banda, M. O. Solaliendres, A. Manzoli, K. I. B. Eguiluz, S. T. Tanimoto, S. A. S. Mac Hado, The processes involved in the Se electrodeposi-tion and dissolution on Au electrode: The H 2Se formation. J Solid State Electr 12 (6), 679-686 (2008).
  • [62] M. F. Cabral, V. A. Pedrosa, S. A. S. Machado, Deposition of selenium thin layers on gold surfaces from sulphuric acid media: Studies using electrochemical quartz crystal mi-crobalance, cyclic voltammetry and AFM. Electrochimica Acta 55 (3), 1184-1192 (2010).
  • [63] K. Mech, P. R. Żabiński, R. Kowalik, K. Fitzner, EQCM, SEC and voltammetric study of kinetics and mechanism of hexaamminecobalt(III) electro-reduction onto gold electrode. Electrochimica Acta 81, 254-259 (2012).
  • [64] K. Mech, P. R. Żabiński, R. Kowalik, K. Fitzner, Voltammetric study of electro-reduction of tetraamminepalladi-um(II) onto gold electrode. Journal of Electroanalytical Chemistry 685, 15-20 (2012).
  • [65] K. Mech, G. Boczkal, P. Pałka, P. R. Żabiński, R. Kowalik, Synthesis of Co-Pd alloys by co-electroreduction of aquachloro-cobalt(II) and palladium(II) complexes. J Solid State Electr: 1-7 (2013).
  • [66] K. Mech, P. R. Żabiński, R. Kowalik, Co-reduction of electrochemically active [Co(H2O) 6]2+ and [CoCl(H2O)5]+ complexes onto gold electrode. Journal of The Electrochemical Society 160 (6), D246-D250 (2013).++
  • [67] K. Mech, P. R. Żabiński, R. Kowalik, K. Fitzn-er, Kinetics and mechanism of [PdClx(H2O) 4-x]2-x(x = 3, 4) complexes electro-reduction. Journal of The Electrochemical Society 160 (10), H770-H774 (2013).
  • [68] K. Mech, P. R. Żabiński, R. Kowalik, K. Fitzner, Analysis of Co-Pd alloys deposition from electrolytes based on [Co(NH 3)6]3+ and [Pd(NH3) 4]2+ complexes. Electrochimica Acta 104, 468-473 (2013).
  • [69] R. Kowalik, P. R. Ż abiński, K. Mech, Electrochemical studies of Cd UPD on polycrystalline silver. Electrochemistry Communications 31, 49-51 (2013).
  • [70] G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Physik 155 (2), 206-222 (1959).
  • [71] T. E. Lister, J. L. Stickney, Atomic Level Studies of Selenium Electrodeposition on Gold(111) and Gold(110). The Journal of Physical Chemistry 100 (1996).
  • [72] R. C. Alkire, D. M. Kolb, Advances in Electrochemical Science and Engineeringv. 7, vol 7. Advances in Electrochemical Science and Engineering. Wiley-VCH, (2001).
  • [73] T. E. Lister, J. L. Stickney, Atomic level studies of selenium electrodeposition on gold(111) and gold(110). J Phys Chem-Us 100 (50), 19568-19576 (1996).
  • [74] I. Barin, Thermochemical data of pure substances. VCH, Weinheim (1993).
  • [75] R. Jušknas, D. Avižinis, P. Kalinauskas, A. Selskis, R. Giraitis, V. Pakštas, V. Karpavičien, S. Kanapeckait, Z. Mockus, R. Kondrotas, XRD, SEM and photoelectrochemical characterization of ZnSe electrodeposited on Cu and Cu-Sn substrates. Electrochimica Acta 70, 118-123 (2012)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-856bb900-de83-49b7-ab97-fda4f263010c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.