PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of ascorbic acid using differential pulse voltammetry method on aniline-co-para–aminophenol modified electrode

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electro-synthesis of poly(aniline-co-para–aminophenol) on graphite electrode was examined using cyclic voltammetry (CV) over the potential window of −0.2 V to 1 V in phosphoric acid medium, which was comprised of potassium chloride and para–Toluene sulfonic acid (pTSA) as electrolyte support. Fourier transform infrared (FTIR) spectroscopy was employed to identify the electro-synthesized copolymer while impedance techniques were used to determine charge transfer resistance (Rct) in modified and unmodified electrodes. After this, the electro-catalytic effect of the modified electrode on ascorbic acid was examined using differential pulse voltammetry (DPV) and a very strong response was observed. A negative shift of about 0.33 V was found in the peak anodic potentials for ascorbic acid. Measurement using DPV indicated a proper response by the electrode to a wide range of ascorbic acid concentrations, from 0.0001 to 0.0004 M. The peak anodic currents for increased concentrations showed a proper linear range.
Rocznik
Strony
125--129
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, College of Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran (Islamic Republic of Iran)
autor
  • Department of Chemistry, College of Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran (Islamic Republic of Iran)
Bibliografia
  • 1. Luo, J., Zhang, H., Wang, X., Li, J. & Wang, F. (2007). Stable Aqueous Dispersion of Conducting Polyaniline with High Electrical Conductivity. Macromolecules 40(23), 8132–8135. DOI: 10.1021/ma070883f.
  • 2. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K. & Heeger, A.J. (1977). Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. (16), 578–580. DOI: 10.1039/C39770000578.
  • 3. Zhang, X., Wu, X., Yu, L., Yang, B. & Zhou, J. (2015). Highly sensitive and selective polyaniline thin-film sensors for detecting SF6 decomposition products at room temperature. Synth. Met. 200(0), 74–79. DOI: 10.1016/j.synthmet.2014.12.033.
  • 4. Niaura, G., Mazeikiene, R. & Malinauskas, A. (2004). Structural changes in conducting form of polyaniline upon ring sulfonation as deduced by near infrared resonance Raman spectroscopy. Synth. Met. 145(2–3), 105–112. DOI: 10.1016/j.synthmet.2004.04.010.
  • 5. Anilkumar, P. & Jayakannan, M. (2007). Single-Molecular-System-Based Selective Micellar Templates for Polyaniline Nanomaterials: Control of Shape, Size, Solid State Ordering, and Expanded Chain to Coillike Conformation. Macromolecules 40(20), 7311–7319. DOI: 10.1021/ma071292s.
  • 6. Gribkova, O.L., Nekrasov, A.A., Ivanov, V.F., Zolotorevsky, V.I. & Vannikov, A.V. (2014). Templating effect of polymeric sulfonic acids on electropolymerization of aniline. Electrochim. Acta 122, 150–158. DOI: 10.1016/j.electacta.2013.12.025.
  • 7. Gribkova, O.L., Omelchenko, O.D., Nekrasov, A.A., Ivanov, V.F. & Vannikov, A.V. (2015). On the nature of influence of polyelectrolyte molecular weight on aniline electropolymerization. J. Solid State Electrochem. 19(9), 2643–2652. DOI: 10.1007/s10008-015-2853-4.
  • 8. Chen, Z., Lv, H., Zhu, X., Li, D., Zhang, S., Chen, X. & Song, Y. (2014). Electropolymerization of aniline onto anodic WO3 film: An approach to extend polyaniline electroactivity beyond pH 7. J. Phys. Chem. C. 118(47), 27449–27458. DOI: 10.1021/jp509268t.
  • 9. Abalyaeva, V.V. & Efimov, O.N. (2011). Synthesis and electrochemical behavior of polyaniline doped by electroactive anions. Russ. J. Electrochem. 47(11), 1299–1306. DOI: 10.1134/S1023193511110024.
  • 10. Han, J., Sohn, J., Cho, S., Jo, Y., Kim, J., Woo, H., Kim, H., Inamdar, A.I., Kim, H. & Im, H. (2015). Synthesis of self-assembling carbon nanotube-polyaniline nanocomposite on a flexible graphene-coated substrate for electrochemical electrode applications. J. Korean Phys. Soc. 67(3), 512–517. DOI: 10.3938/jkps.67.512.
  • 11. Heydari, M.H., Zebhi, H., Farhadi, K. & Moghadam, P.N. (2016). Electrochemical synthesis of nanostructure poly(3-aminobenzoic acid), polyaniline and their bilayers on 430SS and their corrosion protection performances. Synth. Met. 220, 78–85. DOI: 10.1016/j.synthmet.2016.04.019.
  • 12. Parsa, A. & Ab Ghani, S. (2008). Electrocopolymerization of aniline and ortho-phenylenediamine via facile negative shift of polyaniline redox peaks. Polymer 49(17), 3702–3708. DOI: 10.1016/j.polymer.2008.06.044.
  • 13. Parsa, A. & Ab Ghani, S. (2009). Aqueous electrosyntheses of homo and copolymers of pyrrole and aniline in a binary electrolyte system. J. Electrochem. Soc. 156(6), E105-E111. DOI: 10.1149/1.3117345.
  • 14. Xie, A., Zhou, X., Zhou, W., Cai, K., Li, W., Luo, S. & Yao, C. (2016). Fabrication of Pt/porous PANI using attapulgite as template for electro-oxidation of glycerol. Electrochim. Acta 189, 215–223. DOI: http://dx.doi.org/10.1016/j.electacta.2015.12.104.
  • 15. Parsa, A. & Amanzadeh-Salout, S. (2016). Electrocatalytic activity and electrochemical impedance spectroscopy of poly(aniline-co-ortho-phenylenediamine) modified electrode on ascorbic acid. Orient. J. Chem. 32(4), 2051–2058. DOI: 10.13005/ojc/320432.
  • 16. Gizzie, E.A., Leblanc, G., Jennings, G.K. & Cliffel, D.E. (2015). Electrochemical preparation of photosystem I-polyaniline composite films for biohybrid solar energy conversion. ACS Appl. Mater. Interfaces. 7(18), 9328–9335. DOI: 10.1021/acsami.5b01065.
  • 17. Liu, L., Cui, H., An, H., Zhai, J. & Pan, Y. (2017). Electrochemical detection of aqueous nitrite based on poly-(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics 1–7. DOI: 10.1007/s11581-017-1972-6.
  • 18. Zhang, L. & Dong, S. (2004). The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J. Electroanal. Chem. 568, 189–194. DOI: 10.1016/j.jelechem.2004.01.022.
  • 19. Zuo, X., Zhang, H. & Li, N. (2012). An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode. Sens. Actuat. B: Chemical 161(1), 1074–1079. DOI: 10.1016/j.snb.2011.12.013.
  • 20. Dilgin, Y. & Nişli, G. (2005). Fluorimetric determination of ascorbic acid in vitamin C tablets using methylene blue. Chem. Pharm. Bull. 53(10), 1251–1254. DOI: 10.1248/cpb.53.125
  • 21. Bagheri, H., Pajooheshpour, N., Jamali, B., Amidi, S., Hajian, A. & Khoshsafar, H. (2017). A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4[sbnd] SnO2[sbnd]Gr ternary nanocomposite. Microchem. J. 131, 120–129. DOI: 10.1016/j.microc.2016.12.006.
  • 22. Solhjoo, A. & Khajehsharifi, H. (2016). Multivariate calibration applied to the simultaneous spectrophotometric determination of ascorbic acid, tyrosine and epinephrine in pharmaceutical formulation and biological fluids. Curr. Anal. Chem. 12(6), 580–593. DOI: 10.2174/1573411012999160401124820.
  • 23. Shekhovtsova, T.N., Muginova, S.V., Luchinina, J.A. & Galimova, A.Z. (2006). Enzymatic methods in food analysis: determination of ascorbic acid. Anal. Chim. Acta 573–574, 125–132. DOI: 10.1016/j.aca.2006.05.015.
  • 24. Ensafi, A.A., Taei, M., Khayamian, T. & Arabzadeh, A. (2010). Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly(sulfonazo III) modified glassy carbon electrode. Sens. Actuat. B: Chemical 147(1), 213–221. DOI: 10.1016/j.snb.2010.02.048.
  • 25. Uzun, D., Balaban Gündüzalp, A. & Hasdemir, E. (2015). Selective determination of dopamine in the presence of uric acid and ascorbic acid by N,N′-bis(indole-3-carboxaldimine)-1,2-diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry. J. Electroanal. Chem. 747, 68–76. DOI: 10.1016/j.jelechem.2015.03.036.
  • 26. MacDiarmid, A.G. & Epstein, A.J. (1989). Polyanilines: a novel class of conducting polymers. Farad. Discus. Chem.Soc. 88(0), 317–332. DOI: 10.1039/dc9898800317.
  • 27. Zhang, L., Shi, Z., Lang, Q. & Pan, J. (2010). Electrochemical synthesis of belt-like polyaniline network on p-phenylenediamine functionalized glassy carbon electrode and its use for the direct electrochemistry of horse heart cytochrome c. Electrochim. Acta 55(3), 641–647. DOI: 10.1016/j.electacta.2009.09.017.
  • 28. Shimano, J.Y. & MacDiarmid, A.G. (2001). Polyaniline, a dynamic block copolymer: Key to attaining its intrinsic conductivity? Synth. Met. 123(2), 251–262. DOI: 10.1016/S0379-6779(01)00293-4.
  • 29. Genies, E.M. & Lapkowski, M. (1988). Polyaniline films. Electrochemical redox mechanisms. Synth. Met. 24(1–2), 61–68. DOI: 10.1016/0379-6779(88)90595-4.
  • 30. Mu, S. (2004). Electrochemical copolymerization of aniline and o-aminophenol. Synth. Met. 143(3), 259–268. DOI: 10.1016/j.synthmet.2003.12.008.
  • 31. Furukawa, Y. (1996). Electronic Absorption and Vibrational Spectroscopies of Conjugated Conducting Polymers. J. Phys. Chem. 100(39), 15644–15653. DOI: 10.1021/jp960608n.
  • 32. Shah, A.u.H.A. & Holze, R. (2006). Spectroelectrochemistry of aniline-o-aminophenol copolymers. Electrochim. Acta 52(3), 1374–1382. DOI: 10.1016/j.electacta.2006.07.040.
  • 33. Liu, M., Ye, M., Yang, Q., Zhang, Y., Xie, Q. & Yao, S. (2006). A new method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemisty. Electrochim. Acta 52(1), 342–352. DOI: 10.1016/j.electacta.2006.05.013.
  • 34. Brédas, J.L., Street, G.B., Thémans, B. & André, J.M. (1985). Organic polymers based on aromatic rings (polyparaphenylene, polypyrrole, polythiophene): Evolution of the electronic properties as a function of the torsion angle between adjacent rings. J. Chem. Phys. 83(3), 1323–1329. DOI: 10.1063/1.449450.
  • 35. Kosseoglou, D., Kokkinofta, R. & Sazou, D. (2011). FTIR spectroscopic characterization of Nafion®-polyaniline composite films employed for the corrosion control of stainless steel. J. Sol. State Electrochem. 15(11–12), 2619–2631. DOI: 10.1007/s10008-010-1241-3.
  • 36. Liu, M., Krasteva, M. & Barth, A. (2005). Interactions of phosphate groups of ATP and aspartyl phosphate with the sarcoplasmic reticulum Ca2+-ATPase: An FTIR study. Biophys. J. 89(6), 4352–4363. DOI: 10.1529/biophysj.105.061689.
  • 37. Mondal, S.K., Prasad, K.R. & Munichandraiah, N. (2005). Analysis of electrochemical impedance of polyaniline films prepared by galvanostatic, potentiostatic and potentiodynamic methods. Synth. Met. 148(3), 275–286. DOI: 10.1016/j.synthmet.2004.10.010.
  • 38. Magdić Košiček, K., Kvastek, K. & Horvat-Radošević, V. (2016). Hydrogen evolution on Pt and polyaniline modified Pt electrodes—a comparative electrochemical impedance spectroscopy study. J. Sol. State Electrochem. 20(11), 300–3013. DOI: 10.1007/s10008-016-3246-z.
  • 39. Chen, C., Sun, C. & Gao, Y. (2008). Electrosynthesis of poly(aniline-co-p-aminophenol) having electrochemical properties in a wide pH range. Electrochim. Acta 53(7), 3021–3028. DOI: 10.1016/j.electacta.2007.11.039.
  • 40. He, Z., Song, S., Ying, H., Xu, L. & Chen, J. (2007). p-Aminophenol degradation by ozonation combined with sonolysis: Operating conditions influence and mechanism. Ultrason. Sonochem. 14(5), 568–574. DOI: 10.1016/j.ultsonch.2006.10.002.
  • 41. Mu, S. (2006). Poly(aniline-co-o-aminophenol) nano-structured network: Electrochemical controllable synthesis and electrocatalysis. Electrochim. Acta 51(17), 3434–3440. DOI: 10.1016/j.electacta.2005.09.039.
  • 42. Baldissera, A.F., Freitas, D.B. & Ferreira, C.A. (2010). Electrochemical impedance spectroscopy investigation of chlorinated rubber-based coatings containing polyaniline as anticorrosion agent. Mater. Corros. 61(9), 790–801. DOI: 10.1002/maco.200905254.
  • 43. Zic, M. (2007). The effect of the PANI-free volume on impedance response. J. Electroanal. Chem. 610(1), 57–66. DOI: 10.1016/j.jelechem.2007.07.001.
  • 44. Moreira, F.T.C. & Sales, M.G.F. (2017). Smart naturally plastic antibody based on poly(α-cyclodextrin) polymer for β-amyloid-42 soluble oligomer detection. Sens Actuat. B: Chemical 240, 229–238. DOI: 10.1016/j.snb.2016.08.150.
  • 45. Marmisollé, W.A., Inés Florit, M. & Posadas, D. (2012). Electrochemically induced ageing of polyaniline. An electrochemical impedance spectroscopy study. J. Electroanal. Chem. 673, 65–71. DOI: 10.1016/j.jelechem.2012.03.016.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8566ce10-c793-448b-af5a-3640cd9bd664
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.