Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Acoustic Doppler velocimetry profilers (ADVPs) are widely used in both experimental and field studies because of their robustness in velocity measurements. The acquired measurements do not only offer estimates of the local and instantaneous flow velocity at the interrogated measurement volume, but can also be further processed for the estimation of the bed surface shear stresses, thus they are finding a wide range of applications ranging from water engineering to geomorphology and ecohydraulics. This study aims to evaluate the performance of an ADVP in obtaining hydrodynamics measurements under fixed flow conditions, with various probe configurations. To this goal, a robust search is conducted where ADVP probe settings are sequentially altered. A number of assessment criteria are used including qualitative observations, such as checking the shape of the velocity profile, as well as quantitative error metrics, including signal-to-noise ratio, correlations and number of spikes. Further, estimation of the bed shear stresses computed by means of using the log Law of the Wall and turbulent kinetic energy, allow obtaining a better understanding of the uncertainties involved and the importance of making a better informed choice with respect to the probe configuration settings. Thus, the methodology and performance metrics provided herein, although presented for a given flow, can generally be applied from practitioners and researchers alike.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2297--2310
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Water Engineering Lab, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
autor
- Water Engineering Lab, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
autor
- Water Engineering Lab, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
Bibliografia
- 1. Al-Obaidi K, Xu Y, Valyrakis M (2020) The design and calibration of instrumented particles for assessing water infrastructure hazards. J Sens Actuator Netw 9(3):36
- 2. Al-Obaidi K, Valyrakis M (2021a) A sensory instrumented particle for environmental monitoring applications: development and calibration. IEEE Sens J 21(8):10153–10166
- 3. Al-Obaidi K, Valyrakis M (2021) Linking the explicit probability of entrainment of instrumented particles to flow hydrodynamics. Earth Surf Process Landf 46:2448–2465
- 4. Anderson S, Lohrmann A (1995) Open water test of the Sontek acoustic Doppler velocimeter. In: St. Petersburg, IEEE fifth working conf. on current measurements. IEEE J Ocean pp 188–192
- 5. Biron PM, Robson C, Lapointe MF, Gaskin SJ (2004) Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surf Process Landf 29(11):1403–1415. https://doi.org/10.1002/esp.1111
- 6. Camenen B, Larson M, Bayram A (2009) Equivalent roughness height for plane bed under oscillatory flow. Estuarine Estuar 81(3):14p
- 7. Conevski S, Aleixo R, Guerrero M, Ruther N (2020) Bedload velocity and backscattering strength from mobile sediment bed: a laboratory investigation comparing bistatic versus monostatic acoustic configuration. Water 12(12):3318. https://doi.org/10.3390/w12123318
- 8. Gaeta MG, Guerrero M, Formentin SM, Palma G, Zanuttigh B (2020) Non-intrusive measurements of wave-induced flow over dikes by means of a combined ultrasound doppler velocimetry and videography. Water 12(11):3053. https://doi.org/10.3390/w12113053
- 9. Craig RG, Loadman C, Clement B, Rusello PJ, Siegel E (2010) Characterization and testing of a new bistatic profiling acoustic doppler velocimeter: the Vectrino-II. In: Proceedings of the IEEE/OES/CWTM tenth working conference on current measurement technology, pp 246–252
- 10. García CM, Cantero MI, Niño Y, García MH (2005) Turbulence measurements with acoustic Doppler velocimeters. J Hydraul Eng 131(12):1062–1073. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1062)
- 11. Goring DG, Nikora VI (2002) Despiking acoustic doppler velocimeter data. J Hydraul Eng 128(1):117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)
- 12. Hurther D, Lemmin U (2001) A correction method for turbulence measurements with a 3D acoustic Doppler velocity profiler. J Atmos Ocean Technol 18:446–458. https://doi.org/10.1175/1520-0426(2001)018%3c0446:ACMFTM%3e2.0.CO;2
- 13. Jesson M, Bridgeman J, Sterling M (2015) Novel software developments for the automated post-processing of high volumes of velocity time-series. Adv Eng Softw 89:36–42. https://doi.org/10.1016/j.advengsoft.2015.06.007
- 14. Jesson M, Sterling M, Bridgeman J (2013) Despiking velocity time-series—optimisation through the combination of spike detection and replacement methods. Flow Meas Instrum 30:45–51. https://doi.org/10.1016/j.flowmeasinst.2013.01.007
- 15. Khorsandi B, Mydlarski L, Gaskin S (2012) Noise in turbulence measurements using acoustic Doppler velocimetry. J Hydraul Eng 138(10):829–838
- 16. Kraus NC, Lohrmann A, Cabrera R (1994) New acoustic meter for measuring 3D laboratory flows. J Hydraul Eng 120(3):406–412. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:3(406)
- 17. McLelland SJ, Nicholas AP (2000) A new method for evaluating errors in high-frequency ADV measurements. Hydrol Process 14(2):351–366. https://doi.org/10.1002/(SICI)1099-1085(20000215)14:2%3c351::AID-HYP963%3e3.0.CO;2-K
- 18. NortekAS (2012) Vectrino profiler user guide. Nortek Scientific Acoustic Development Group Inc., Boston
- 19. NortekAS (2015) Comprehensive manual. Available at: http://www.nortek-as.com/lib/manuals/the-comprehensive-manual. Accessed 22 Oct 2017
- 20. NortekUSA (2011) Vectrino II Configuration. Available at: http://www.nortekusa.com/usa/knowledge-center/table-of-contents/vectrino-ii/configuration. Accessed 9 Oct 2017
- 21. NortekUSA (2011) Velocimeters-principles of operation: acoustic doppler velocimeters. Available at: http://www.nortekusa.com/usa/knowledge-center/table-of-contents/velocimeters. Accessed 12 October 2017.
- 22. Parsheh M, Sotiropoulos F, Porté-Agel F (2010) Estimation of power spectra of acoustic-Doppler velocimetry data contaminated with intermittent spikes. J Hydraul Eng 136(6):368–378. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000202
- 23. Rusello P (2012) Near boundary measurements with a profiling acoustic Doppler velocimeter. In: HMEM conference August 12–15 2012, Snowbird, UT.
- 24. Sumer B (2007) Lecture Notes on Turbulence. Available at: http://www.external.mek.dtu.dk/personal/bms/turb_book_update_30_6_04.pdf. Accessed 9 October 2017.
- 25. Thomas R, Schindfessel L, McLelland S, Creele S (2017) Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler. Meas Sci Technol 28(7):075302. https://doi.org/10.1088/1361-6501/aa7273
- 26. Valyrakis M, Diplas P, Dancey CL (2013) Entrainment of coarse particles in turbulent flows: an energy approach. J Geophys Res Earth Surf 118(1):42–53. https://doi.org/10.1029/2012JF002354
- 27. Voulgaris G, Trowbridge JH (1998) Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J Atmos Ocean Technol 15:272–289
- 28. Yager EM, Venditti JG, Smith HJ, Schmeeckle MW (2018) The trouble with shear stress. Geomorphology 323:41–50
- 29. Yang JQ, Chung H, Nepf HM (2016) The onset of sediment transport in vegetated channels predicted by turbulent kinetic energy. Geophys Res Lett. https://doi.org/10.1002/2016GL071092
- 30. Zedel L, Hay A (2011) Turbulence measurements in a jet: comparing the Vectrino and VectrinoII. In: Proceedings of the IEEE/OES/CWTM tenth working conference on current measurement technology, Monterey, Canada, pp 173–178
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8562c0e5-9812-4a54-8b4c-ae8b5a617b90