PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extreme gradient boosting machine learning method for predicting medical treatment in patients with acute bronchiolitis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acute bronchiolitis is the most common lower respiratory tract infection of infancy. About 2% of infants under 12 months of age hospitalized with this condition each epidemic season. The choice of the correct treatment is important for the evolution of the disease. Therefore, a prediction model for medical treatment identification based on extreme gradient boosting (XGB) machine learning (ML) method is proposed in this paper. Four supervised machine learning algorithms including a k-nearest neighbours (KNN), decision tree (DT), Gaussian Naı¨ve Bayes (GNB) and support vector machine (SVM) were compared with the proposed XGB method. The performance of these methods was then tested implementing a standard 10-fold cross-validation process. The results indicate that the XGB has the best prediction accuracy (94%), high precision (>0.94) and high recall (>0.94). The KNN, SVM, and DT approaches also present moderate prediction accuracy (>87), moderate specificity (>0.87) and moderate sensitivity (>0.87). The GNB algorithm show relatively low classification performance. Based on these results for classification performance and prediction accuracy, the XGB is a solid candidate for a correct classification of patients to be treated. These findings suggest that XGB systems trained with clinical data may serve as a new tool to assist in the treatment of patients with acute bronchiolitis.
Twórcy
autor
  • Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
  • Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain; Clinical Pediatric Service, Virgen de la Luz Hospital, Cuenca, Spain
  • Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain; Clinical Pediatric Service, Virgen de la Luz Hospital, Cuenca, Spain
  • Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain; Clinical Pediatric Service, Virgen de la Luz Hospital, Cuenca, Spain
autor
  • Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
Bibliografia
  • [1] Florin TA, Plint AC, Zorc JJ. Lancet 2017;389:211–24.
  • [2] Hall CB et al. New Engl J Med 2009;360:588–98.
  • [3] Friedman JN, Rieder MJ, Walton JM, Society CP, Committee AC, Therapy D, et al. Paediatr Child Health 2014;19:485–98.
  • [4] Ralston SL et al. Pediatrics 2014;134:e1474–1502.
  • [5] Meissner HC. New Engl J Med 2016;374:62–72.
  • [6] Cebey-López M, et al. PLoS One 2016;11:e0146599.
  • [7] Farley R, Spurling GK, Eriksson L, Del Mar CB. Cochrane Database Syst Rev 2014:10.
  • [8] Akenroye AT, Baskin MN, Samnaliev M, Stack AM. Pediatrics 2014;133:e227–34.
  • [9] Goossens H et al. Lancet 2005;365:579–87.
  • [10] Chen I-L, Huang H-C, Chang Y-H, Huang H-Y, Yeh W-J, Wu TY, Suen J-L, Yang S-N, Hung C-H. Scientific Rep 2018;8:1–7.
  • [11] Breakell R, Thorndyke B, Clennett J, Harkensee C. Eur J Pediatr 2018;177:47–51.
  • [12] Oakley E, Brys T, Borland M, Neutze J, Phillips N, Krieser Dea. Emerg Med Australas 2018;30:389–97.
  • [13] Macias CG, Mansbach JM, Fisher ES, Riederer M, Piedra PA, Sullivan AF, Espinola JA, Camargo Jr CA. Acad Pediatr 2015;15:69–76.
  • [14] Mansbach JM, Clark S, Christopher NC, LoVecchio F, Kunz S, Acholonu U, Camargo CA. Pediatrics 2008;121:680–8.
  • [15] Bennett TD, Callahan TJ, Feinstein JA, Ghosh D, Lakhani SA, Spaeder MC, Szefler SJ, Kahn MG. J Pediatr 2019;208:12–22.
  • [16] Azevedo A. Data mining and knowledge discovery in databases. In Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics; 2019.
  • [17] Ramirez-Bautista JA, Huerta-Ruelas JA, Kóczy LT, Hatwágner MF, Chaparro-Cárdenas SL, Hernández-Zavala A. Biocybern Biomed Eng 2020;40:404–14.
  • [18] George ST, Subathra M, Sairamya N, Susmitha L, Premkumar MJ. Biocybern Biomed Eng 2020.
  • [19] Kumar I, Bhadauria H, Virmani J, Thakur S. Biocybern Biomed Eng 2017;37:217–28.
  • [20] Han J, Pei J, Kamber M. Data mining: concepts and techniques. Third Edition 2016.
  • [21] Tuncer T, Dogan S, Acharya UR. Biocybern Biomed Eng 2020;40:211–20.
  • [22] Aggarwal Y, Das J, Mazumder PM, Kumar R, Sinha RK. Biocybern Biomed Eng 2020.
  • [23] Zhang S, Li X, Zong M, Zhu X, Wang R. IEEE Trans Neural Networks Learn Syst 2017;29:1774–85.
  • [24] Geethanjali ASP. IEEE Access 2016;4:7716–27.
  • [25] Wang Y, Xia S, Tang Q, Wu J, Zhu X. IEEE Trans Neural Networks Learn Syst 2018;29:3510–23.
  • [26] Subudhi A, Dash M, Sabut S. Biocybern Biomed Eng 2020;40:277–89.
  • [27] Zhang Z, Song Y, Cui H, Wu J, Schwartz F, Qi H. IEEE Trans Biomed Eng 2017;64:2288–99.
  • [28] Xiao F, Wang Y, He L, Wang H, Li W, Liu Z. IEEE Access 2019;7:13121–34.
  • [29] Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm SIGKDD international conference on knowledge discovery and data mining.
  • [30] Chang W, Liu Y, Wu X, Xiao Y, Zhou S, Cao W. IEEE Access 2019;7:175248–58.
  • [31] McConnochie KM. Am J Diseases Children 1983;137:11–3.
  • [32] Chen W, Fu K, Zuo J, Zheng X, Huang T, Ren W. IET Radar Sonar Navigation 2017;11:1203–7.
  • [33] He T. XGBoost eXtreme Gradient Boosting.
  • [34] Yu S, Li X, Zhang X, Wang H. IEEE Access 2019;7:118931–42.
  • [35] Zhou X, Obuchowski NA, McClish DK. Statistical methods in diagnostic medicine. 2nd ed. John Wiley and Sons; 2011.
  • [36] Bailhache M, Bloudeau E, Richer O, Pillet P, Lagarde M. Acta Paediatr 2018;107:538–9.
  • [37] Ferronato  E, Gilio AE, Ferraro AA, Paulis Md, Vieira SE. Clinics 2012;67:1001–6.
  • [38] Patra S, Singh V, Pemde HK, Chandra J. Ital J Pediatr 2011;37:40.
  • [39] Chong S-L, Liu N, Barbier S, Ong MEH. BMC Med Res Methodol 2015;15:22.
  • [40] Patel SJ, Chamberlain DB, Chamberlain JM. Acad Emerg Med 2018;25:1463–70.
  • [41] Goto T, Camargo CA, Faridi MK, Freishtat RJ, Hasegawa K. JAMA Network Open 2019;2:e186937–e186937.
  • [42] Wellner B, Grand J, Canzone E, Coarr M, Brady PW, Simmons J, Kirkendall E, Dean N, Kleinman M, Sylvester P. JMIR Med Inf 2017;5 e45.
  • [43] Ma B, Meng F, Yan G, Yan H, Chai B, Song F. Comput Biol Med 2020 103761.
  • [44] Torlay L, Perrone Bertolotti M, Thomas E, Baciu M. Brain Inf 2017;4:159–69.
  • [45] Ogunleye AA, Qing-Guo W. IEEE/ACM Trans Comput Biol Bioinf 2019.
  • [46] Sodmann P, Vollmer M, Nath N, Kaderali L. Physiol Meas 2018;39 104005.
  • [47] Shi H, Wang H, Huang Y, Zhao L, Qin C, Liu C. Comput Methods Programs Biomed 2019;171:1–10.
  • [48] Ye C et al. J Med Internet Res 2018;20 e22.
  • [49] Yu B, Qiu W, Chen C, Ma A, Jiang J, Zhou H, Ma Q. Bioinformatics 2020;36:1074–81.
  • [50] Zhong J, Sun Y, Peng W, Xie M, Yang J, Tang X. IEEE Trans NanoBiosci 2018;17:243–50.
  • [51] Kumar S, Mankame DP. Biocybern Biomed Eng 2020;40:1190–204.
  • [52] Jain G, Mittal D, Thakur D, Mittal MK. Biocybern Biomed Eng 2020;40:1391–405.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-855d9723-52d9-4b81-b10c-64a46aeccca0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.