Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Acute bronchiolitis is the most common lower respiratory tract infection of infancy. About 2% of infants under 12 months of age hospitalized with this condition each epidemic season. The choice of the correct treatment is important for the evolution of the disease. Therefore, a prediction model for medical treatment identification based on extreme gradient boosting (XGB) machine learning (ML) method is proposed in this paper. Four supervised machine learning algorithms including a k-nearest neighbours (KNN), decision tree (DT), Gaussian Naı¨ve Bayes (GNB) and support vector machine (SVM) were compared with the proposed XGB method. The performance of these methods was then tested implementing a standard 10-fold cross-validation process. The results indicate that the XGB has the best prediction accuracy (94%), high precision (>0.94) and high recall (>0.94). The KNN, SVM, and DT approaches also present moderate prediction accuracy (>87), moderate specificity (>0.87) and moderate sensitivity (>0.87). The GNB algorithm show relatively low classification performance. Based on these results for classification performance and prediction accuracy, the XGB is a solid candidate for a correct classification of patients to be treated. These findings suggest that XGB systems trained with clinical data may serve as a new tool to assist in the treatment of patients with acute bronchiolitis.
Wydawca
Czasopismo
Rocznik
Tom
Strony
792--801
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
- Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
autor
- Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain; Clinical Pediatric Service, Virgen de la Luz Hospital, Cuenca, Spain
autor
- Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain; Clinical Pediatric Service, Virgen de la Luz Hospital, Cuenca, Spain
autor
- Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain; Clinical Pediatric Service, Virgen de la Luz Hospital, Cuenca, Spain
autor
- Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
Bibliografia
- [1] Florin TA, Plint AC, Zorc JJ. Lancet 2017;389:211–24.
- [2] Hall CB et al. New Engl J Med 2009;360:588–98.
- [3] Friedman JN, Rieder MJ, Walton JM, Society CP, Committee AC, Therapy D, et al. Paediatr Child Health 2014;19:485–98.
- [4] Ralston SL et al. Pediatrics 2014;134:e1474–1502.
- [5] Meissner HC. New Engl J Med 2016;374:62–72.
- [6] Cebey-López M, et al. PLoS One 2016;11:e0146599.
- [7] Farley R, Spurling GK, Eriksson L, Del Mar CB. Cochrane Database Syst Rev 2014:10.
- [8] Akenroye AT, Baskin MN, Samnaliev M, Stack AM. Pediatrics 2014;133:e227–34.
- [9] Goossens H et al. Lancet 2005;365:579–87.
- [10] Chen I-L, Huang H-C, Chang Y-H, Huang H-Y, Yeh W-J, Wu TY, Suen J-L, Yang S-N, Hung C-H. Scientific Rep 2018;8:1–7.
- [11] Breakell R, Thorndyke B, Clennett J, Harkensee C. Eur J Pediatr 2018;177:47–51.
- [12] Oakley E, Brys T, Borland M, Neutze J, Phillips N, Krieser Dea. Emerg Med Australas 2018;30:389–97.
- [13] Macias CG, Mansbach JM, Fisher ES, Riederer M, Piedra PA, Sullivan AF, Espinola JA, Camargo Jr CA. Acad Pediatr 2015;15:69–76.
- [14] Mansbach JM, Clark S, Christopher NC, LoVecchio F, Kunz S, Acholonu U, Camargo CA. Pediatrics 2008;121:680–8.
- [15] Bennett TD, Callahan TJ, Feinstein JA, Ghosh D, Lakhani SA, Spaeder MC, Szefler SJ, Kahn MG. J Pediatr 2019;208:12–22.
- [16] Azevedo A. Data mining and knowledge discovery in databases. In Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics; 2019.
- [17] Ramirez-Bautista JA, Huerta-Ruelas JA, Kóczy LT, Hatwágner MF, Chaparro-Cárdenas SL, Hernández-Zavala A. Biocybern Biomed Eng 2020;40:404–14.
- [18] George ST, Subathra M, Sairamya N, Susmitha L, Premkumar MJ. Biocybern Biomed Eng 2020.
- [19] Kumar I, Bhadauria H, Virmani J, Thakur S. Biocybern Biomed Eng 2017;37:217–28.
- [20] Han J, Pei J, Kamber M. Data mining: concepts and techniques. Third Edition 2016.
- [21] Tuncer T, Dogan S, Acharya UR. Biocybern Biomed Eng 2020;40:211–20.
- [22] Aggarwal Y, Das J, Mazumder PM, Kumar R, Sinha RK. Biocybern Biomed Eng 2020.
- [23] Zhang S, Li X, Zong M, Zhu X, Wang R. IEEE Trans Neural Networks Learn Syst 2017;29:1774–85.
- [24] Geethanjali ASP. IEEE Access 2016;4:7716–27.
- [25] Wang Y, Xia S, Tang Q, Wu J, Zhu X. IEEE Trans Neural Networks Learn Syst 2018;29:3510–23.
- [26] Subudhi A, Dash M, Sabut S. Biocybern Biomed Eng 2020;40:277–89.
- [27] Zhang Z, Song Y, Cui H, Wu J, Schwartz F, Qi H. IEEE Trans Biomed Eng 2017;64:2288–99.
- [28] Xiao F, Wang Y, He L, Wang H, Li W, Liu Z. IEEE Access 2019;7:13121–34.
- [29] Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm SIGKDD international conference on knowledge discovery and data mining.
- [30] Chang W, Liu Y, Wu X, Xiao Y, Zhou S, Cao W. IEEE Access 2019;7:175248–58.
- [31] McConnochie KM. Am J Diseases Children 1983;137:11–3.
- [32] Chen W, Fu K, Zuo J, Zheng X, Huang T, Ren W. IET Radar Sonar Navigation 2017;11:1203–7.
- [33] He T. XGBoost eXtreme Gradient Boosting.
- [34] Yu S, Li X, Zhang X, Wang H. IEEE Access 2019;7:118931–42.
- [35] Zhou X, Obuchowski NA, McClish DK. Statistical methods in diagnostic medicine. 2nd ed. John Wiley and Sons; 2011.
- [36] Bailhache M, Bloudeau E, Richer O, Pillet P, Lagarde M. Acta Paediatr 2018;107:538–9.
- [37] Ferronato  E, Gilio AE, Ferraro AA, Paulis Md, Vieira SE. Clinics 2012;67:1001–6.
- [38] Patra S, Singh V, Pemde HK, Chandra J. Ital J Pediatr 2011;37:40.
- [39] Chong S-L, Liu N, Barbier S, Ong MEH. BMC Med Res Methodol 2015;15:22.
- [40] Patel SJ, Chamberlain DB, Chamberlain JM. Acad Emerg Med 2018;25:1463–70.
- [41] Goto T, Camargo CA, Faridi MK, Freishtat RJ, Hasegawa K. JAMA Network Open 2019;2:e186937–e186937.
- [42] Wellner B, Grand J, Canzone E, Coarr M, Brady PW, Simmons J, Kirkendall E, Dean N, Kleinman M, Sylvester P. JMIR Med Inf 2017;5 e45.
- [43] Ma B, Meng F, Yan G, Yan H, Chai B, Song F. Comput Biol Med 2020 103761.
- [44] Torlay L, Perrone Bertolotti M, Thomas E, Baciu M. Brain Inf 2017;4:159–69.
- [45] Ogunleye AA, Qing-Guo W. IEEE/ACM Trans Comput Biol Bioinf 2019.
- [46] Sodmann P, Vollmer M, Nath N, Kaderali L. Physiol Meas 2018;39 104005.
- [47] Shi H, Wang H, Huang Y, Zhao L, Qin C, Liu C. Comput Methods Programs Biomed 2019;171:1–10.
- [48] Ye C et al. J Med Internet Res 2018;20 e22.
- [49] Yu B, Qiu W, Chen C, Ma A, Jiang J, Zhou H, Ma Q. Bioinformatics 2020;36:1074–81.
- [50] Zhong J, Sun Y, Peng W, Xie M, Yang J, Tang X. IEEE Trans NanoBiosci 2018;17:243–50.
- [51] Kumar S, Mankame DP. Biocybern Biomed Eng 2020;40:1190–204.
- [52] Jain G, Mittal D, Thakur D, Mittal MK. Biocybern Biomed Eng 2020;40:1391–405.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-855d9723-52d9-4b81-b10c-64a46aeccca0