PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of the Co-Digestion of the Sewage Sludge and Plant Biomass on the Example of Lviv WWTP

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy strategies of most developed countries include the sustainable development of all types of renewable energy, including energy generation from biomass. Co-digestion of sewage sludge and plant biomass has a number of synergetic effects, leading to increased digestion rate and output of biogas. The range of potentially effective co-digestion of sewage sludge with plant raw materials was considered on the example of the full-scale estimation study for Lviv WWTP, Ukraine. Substitution of the 25% of dry organic matter of sewage sludge by the same amount of plant raw matter can increase the total output of the methane at the biogas station by about 5.8%.
Twórcy
  • Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, 12, S. Bandera Str., Lviv, 79013, Ukraine
  • Institute of Woodworking, Computer Technology and Design, Ukrainian National Forestry University, 103, Gen. Chuprynky Str., Lviv, 79057, Ukraine
autor
  • Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, 12, S. Bandera Str., Lviv, 79013, Ukraine
  • Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, 12, S. Bandera Str., Lviv, 79013, Ukraine
autor
  • Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, 12, S. Bandera Str., Lviv, 79013, Ukraine
  • Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, 12, S. Bandera Str., Lviv, 79013, Ukraine
Bibliografia
  • 1. Barbash V.A., Prymakov S.P., Trembus I.V., Kulik M.O. 2010. Modified ASAE method of delignification of wheat straw. Visnyk Nacionalnogo Tekhnichnogo Universytetu Ukrayiny, Kyyivskyj Politekhnichnyj Instytut. Khimichna Inzheneriya, Ekologiya ta Resursozberezhennya, 2(6): 97−101. (In Ukrainian)
  • 2. Binod P., Pandey A. 2015. Introduction. In Pretreatment of Biomass, Amsterdam, Netherlands. Elsevier, 3–6.
  • 3. Blyashyna M., Zhukova V., Sabliy L. 2018. Processes of biological wastewater treatment for nitrogen, phosphorus removal by immobilized microorganisms. Eastern-European Journal of Enterprise Technologies, 2/10(92), 30–37.
  • 4. Hardegen J., Latorre-Pérez A., Vilanova C., Günther T., Porcar M., et al. 2018. Methanogenic community shifts during the transition from sewage mono-digestion to co-digestion of grass biomass. Bioresource Technology, 265, 275−281.
  • 5. Ishizaki H., Hasumi K. 2014. Ethanol production from biomass. Research Approaches to Sustainable Biomass Systems, Boston, MA, USA. Academic Press, 243–258,
  • 6. Jiang J.G., Lou Z.Y., Zhao Z.Z., Wu S.Y., Sui J.C. 2009. Start-up of high solid anaerobic digestion process for treating straw with sludge cake as nitrogen additive. Huanjing Kexue / Environmental Science, 30(1), 297−301.
  • 7. Karabyn V., Shtain B., Popovych V. 2018. Thermal regimes of spontaneous firing coal washing waste sites. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3(429), 64−74.
  • 8. Kim M., Liu C., Noh J.W., Yang Y., Oh S., et al. 2013. Hydrogen and methane production from untreated rice straw and raw sewage sludge under thermophilic anaerobic conditions. International Journal of Hydrogen Energy, 38(21), 8648−8656.
  • 9. Kumar P., Barrett D., Delwiche M.J., Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713−3729.
  • 10. Luo J., Meng H., Yao Z., Wachemo A.C., Yuan H., et al. 2018. Anaerobic co-digestion of sodium hydroxide pretreated sugarcane leaves with pig manure and dairy manure. International Journal of Agricultural and Biological Engineering, 11(4), 224−229.
  • 11. Malovanyy M., Nikiforov V., Kharlamova O., Synelnikov O. 2016. Production of renewable energy resources via complex treatment of cyanobacteria biomass. Chemistry & Chemical Technology, 10(2), 251−254.
  • 12. Malovanyy M., Sakalova H., Vasylinych T., Kryklyvyi R. 2019a. The research of ammonium concentrations in city stocks and further sedimentation of ion-exchange concentrate. Journal of Ecological Engineering, 20(1), 158−164.
  • 13. Malovanyy M., Moroz O., Hnatush S., Maslovska O., Zhuk V., et al. 2019b. Perspective technologies of the treatment of the wastewaters with high content of organic pollutants and ammoniacal nitrogen. Journal of Ecological Engineering, 20(2), 8−15.
  • 14. Mosier N., Wyman C., Dale B., Elander R., Lee Y., et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.
  • 15. Muenmee S. 2021. Potential biogas production generated by mono- and codigestion of food waste and fruit waste (durian shell, dragon fruit and pineapple peel) in different mixture ratio under anaerobic condition. Environmental Research, Engineering and Management, 77(1), 25–35.
  • 16. Nesterov A.Y., Suslenkov B.D., Starovoytova G.A. 1973. Optymіzacіja pіtatelnogo mіneralnogo rastvora dlja metanpotreblyayushchykh bakterij. Prykladnaya Biokhimija і Mikrobiologijya, 9, 873−876. (in Russian)
  • 17. Nykyforov V., Malovanyy M., Kozlovska T., Novokhatko O., Digtiar S. 2016. The biotechnological ways of blue-green algae complex processing. Eastern-European Journal of Enterprise Technologies, 5(10), 11−18.
  • 18. Popovych V., Stepova K., Prydatko O. 2018. Environmental hazard of Novoyavorivsk municipal landfill. MATEC Web of Conferences 247, 00025. FESE 2018.
  • 19. Pospelov B., Andronov V., Rybka E., Meleshchenko R., Gornostal S. 2018. Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. European Journal of Enterprise Technologies, 2/10(92), 44−49.
  • 20. Project of Reconstruction of Wastewater Treatment Plant and Construction of a Biogas Station in Lviv. 2014. Renewal of feasibility study. EBRD: C29880/SWUK-2014-09-04. Abanor AB.
  • 21. Qian E.W. 2014. Research approaches to sustainable biomass systems. Research Approaches to Sustainable Biomass Systems, Cambridge, MA, USA: Academic Press, 181–204,
  • 22. Sadecka Z., Myszograj S., Suchowska-Kisielewicz M., Sieciechowicz A. 2013. Substraty do procesu ko-fermentacji. Zeszyty Naukowe. Inżynieria Środowiska. Uniwersytet Zielonogórski, 150(30), 23−31.
  • 23. Sawasdee V., Pisutpaisa N. 2015. Economic feasible evaluation of biogas production from Napier grass. Research Journal of Biotechnology, 10(3), 94−98.
  • 24. Sklyar O.G., Sklyar R.V. 2014. Methods of intensification of methane fermentation processes. Naukovyj Visnyk Tavrijskyj Derzhavnyj Agrotekhnologichnyj Universytet, 4(1), 3−9. (in Ukrainian)
  • 25. Szczyrba P., Masłoń A., Czarnota J., Olszewski K. 2020. Analysis of sewage sludge and biogas-energy management at the Opole wastewater treatment plant. Ecological Engineering & Environmental Technology, 21(2), 26−34.
  • 26. Thorin E., Olsson J., Schwede S., Nehrenheim E. 2017. Biogas from co-digestion of sewage sludge and microalgaе. Energy Procedia, 105, 1037−1042.
  • 27. Tulaydan Y., Malovanyy M., Kochubei V., Sakalova H. 2017. Treatment of high-strength wastewater from ammonium and phosphate ions with the obtaining of struvite. Chemistry & Chemical Technology, 11(4), 463−468.
  • 28. Voytovych I., Malovanyy M., Zhuk V., Mukha O. 2020. Facilities and problems of processing organic wastes by family-type biogas plants in Ukraine. Journal of Water and Land Development, 45(4–6), 185−189.
  • 29. Wehner M., Müller W., Bockreis A. 2018. Demandoriented energy supply by the anaerobic digestion of organic waste. Energetika, 64(3), 115−120.
  • 30. Wu Z., Ferreira D.F., Crudo D., Bosco V., Stevanato L., et al. 2019. Plant and biomass extraction and valorisation under hydrodynamic cavitation. Processes, 7(965), 19.
  • 31. Yang L., Li Y. 2014. Anaerobic digestion of giant reed for methane production. Bioresource Technology, 171(1), 233−239.
  • 32. Zelenko Y., Malovanyy M., Tarasova L. 2019. Optimization of heat-and-power plants water purification. Chemistry & Chemical Technology, 13(2), 218−223.
  • 33. Zhong W., Zhang Z., Luo Y., Qiao W., Xiao M., Zhang M. 2012. Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresource Technology, 114, 281−286.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85550419-703e-45a9-82fa-8561668ae0f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.