PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected issues of the structures and parameters of supercritical CO2 gas turbine cycles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a variant analysis of the structures of closed gas turbines using supercritical carbon dioxide (super-CO2) as a working fluid. Several configurations covered in the available literature were collected, commented on and compared. The parameters of the cycles, such as operating temperature and heat supply are noted and commented on. There are three main configurations considered in the available literature: the precompression cycle, partial cooling cycle, and recompression cycle.
Rocznik
Strony
565--583
Opis fizyczny
Bbliogr. 35 poz., il. kolor., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 00-665 Warsaw, 21/25 Nowowiejska Street, Poland
Bibliografia
  • [1] Feher, E. G.: The supercritical thermodynamic power cycle, Energy Conversion, 8, 2, 85-90, 1968.
  • [2] Dostal, V., Driscoll, M., Hejzlar, P.: A supercritical carbon dioxide cycle for next generation nuclear reactors, Massachusetts Institute of Technology, MA, 2004.
  • [3] Driscoll, M.: Supercritical CO2 plant cost assessment. Center for Advanced Nuclear Energy Systems, MIT Nuclear Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, Report No. MIT-GFR-019, 2004.
  • [4] Chen, Y., Lundqvist, P., Johansson, A., Platell, P.: A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery, Applied thermal engineering, 26, 17-18, 2142-2147, 2006.
  • [5] Vidhi, R., Goswami, Y. D., Chen, H., Stefanakos, E., Kuravi, S., Sabau, A. S.: Study of supercritical carbon dioxide power cycle for low grade heat conversion, 2011.
  • [6] Akbari, A. D., Mahmoudi, S. M.: Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy, 78, 501-512, 2014.
  • [7] Wang, J., Sun, Z., Dai, Y., Ma, S.: Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network, Applied Energy, 87, 4, 1317-1324., 2010.
  • [8] Kulh anek, M. A. D. V., Dostal, V.: Thermodynamic analysis and comparison of supercritical carbon dioxide cycles, Supercritical CO2 Power Cycle Symposium, 1-7, 2011.
  • [9] Bryant, J. C., Saari, H., Zanganeh, K.: An analysis and comparison of the simple and recompression supercritical CO2 cycles, Supercritical CO2 Power Cycle Symposium, 1-8, 2011.
  • [10] Kim, Y. M., Kim, C. G., Favrat, D.: Transcritical or supercritical CO2 cycles using both low-and high-temperature heat sources, Energy, 43, 1, 402-415, 2012.
  • [11] Moroz, L., Burlaka, M., Rudenko, O.: Study of a Supercritical CO2 power cycle application in a cogeneration power plant, In The 5th supercritical CO2 power cycles symposium, San Antonio, TX, 2014.
  • [12] P erez-Pichel, G. D., Linares, J. I., Herranz, L. E., Moratilla, B. Y.: Thermal analysis of supercritical CO2 power cycles: Assessment of their suitability to the forthcoming sodium fast reactors, Nuclear Engineering and Design, 250, 23-34, 2012.
  • [13] Moisseytsev, A., Sienicki, J. J.: Investigation of alternative layouts for the supercritical carbon dioxide brayton cycle for a sodium-cooled fast reactor, Nuclear Engineering and Design, 239, 7, 1362-1371, 2009.
  • [14] Halimi, B., Suh, K. Y.: Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor, Energy Conversion and management, 63, 38-43, 2011.
  • [15] Harvego, E. A., McKellar, M. G.: Optimization and comparison of direct and indirect supercritical carbon dioxide power plant cycles for nuclear applications. In ASME 2011 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 75-81, 2011.
  • [16] Yoon, H. J., Ahn, Y., Lee, J. I., Addad, Y.: Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor, Nuclear Engineering and Design, 245, 223-232, 2012.
  • [17] Liu, J., Chen, H., Xu, Y., Wang, L., Tan, C.: A solar energy storage and power generation system based on supercritical carbon dioxide, Renewable Energy, 64, 43-51, 2014.
  • [18] Yamaguchi, H., Zhang, X. R., Fujima, K., Enomoto, M., Sawada, N.: Solar energy powered Rankine cycle using supercritical CO2, Applied Thermal Engineering, 26, 17-18, 2345-2354, 2006.
  • [19] Zhang, X. R., Yamaguchi, H., Uneno, D., Fujima, K., Enomoto, M., Sawada, N.: Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide, Renewable Energy, 31, 12, 1839-1854, 2006.
  • [20] Zhang, X. R., Yamaguchi, H., Uneno, D.: Experimental study on the performance of solar Rankine system using supercritical CO2, Renewable Energy, 32, 15, 2617-2628, 2007.
  • [21] Iverson, B. D., Conboy, T. M., Pasch, J. J., Kruizenga, A. M.: Supercritical CO2 Brayton cycles for solar-thermal energy, Applied Energy, 111, 957-970, 2013.
  • [22] Padilla, R. V., Too, Y. C. S., Benito, R., Stein, W.: Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Applied Energy, 148, 348-365, 2015.
  • [23] Cheang, V. T., Hedderwick, R. A., McGregor, C.: Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for concentrated solar power, Solar Energy, 113, 199-211, 2015.
  • [24] Czelej, K., Cwieka, K., Colmenares, J. C., Kurzydlowski, K. J.: Atomistic insight into the electrode reaction mechanism of the cathode in molten carbonate fuel cells, Journal of Materials Chemistry A, 5, 26, 13763-13768, 2017.
  • [25] Sánchez, D., Chacartegui, R., Jiménez-Espadafor, F., Sánchez, T.: A new concept for high temperature fuel cell hybrid systems using supercritical carbon dioxide, Journal of fuel cell science and technology, 6, 2, 021306, 2009.
  • [26] Munoz De Escalona, J. M.: The potential of the supercritical carbon dioxide cycle in high temperature fuel cell hybrid systems, Supercritical CO2 Power Cycle Symposium, 2011.
  • [27] Bae, S. J., Ahn, Y., Lee, J., Lee, J. I.: Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application, Journal of Power Sources, 270, 608-618, 2014.
  • [28] Grzebielec, A., Rusowicz, A., Szelągowski, A.: Air purification in industrial plants producing automotive rubber components in terms of energy efficiency, Open Engineering, 7, 1, 106-114, 2017.
  • [29] Le Moullec, Y.: Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle, Energy, 49, 32-46, 2013.
  • [30] Audasso, E., Nam, S., Arato, E., Bosio, B.: Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning, Journal of Power Sources, 352, 216-225, 2017.
  • [31] Le Moullec, Y.: Conception of a pulverized coal fired power plant with carbon capture around a supercritical carbon dioxide Brayton cycle, Energy Procedia, 37, 1180-1186, 2013.
  • [32] McClung, A., Brun, K., Chordia, L.: Technical and economic evaluation of supercritical oxy-combustion for power generation, The 4th International Symposium - Supercritical CO2 Power Cycles, 2014.
  • [33] Chen, Y., Lundqvist, P., Platell, P.: Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle’s fuel consumption, Applied Thermal Engineering, 25, 14-15, 2041-2053, 2005.
  • [34] Barelli, L., Bidini, G., Hernàndez-Balada, E., Mata-Álvarez, J., Sisani, E.: Performance characterization of a novel Fe-based sorbent for anaerobic gas desulfurization finalized to high temperature fuel cell applications, International Journal of Hydrogen Energy, 42, 3, 1859-1874, 2017.
  • [35] Angelino, G.: Carbon dioxide condensation cycles for power production, Journal of Engineering for Power, 90, 3, 287-295, 1968.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8553e41f-64c7-43c1-ba7f-ccd2b16d743c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.