PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immediate after-effects of shapes of clothing worn on tandem gait performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This study investigated the immediate after-effects of clothing shape on tandem gait performance. Methods: Nineteen healthy men (21.8 ± 1.8 years) performed tandem gait tests while blindfolded under three clothing conditions: only half or short tights, a cotton cloth wrapped around the waist and draped to the middle point of the lower leg (DC), and tracksuit bottoms (TS). Participants performed pre- and post-gait tests at their fastest possible speed while wearing tights. Between the pre- and post-tests, participants practiced the same tandem gait, but at their own chosen speed while wearing DC or TS. Results: The practice with the DC increased gait speed and decreased lateral shift during the post-gait test compared to the pre-gait test. The practice while wearing the TS also reduced lateral shift but did not increase gait speed. Conclusions: These results suggest that some clothing shapes are more effective for motor learning of balance control during tandem gait by enhancing the feedback for body orientation. Clothing that has a certain amount of space between the material and the body and that makes contact with the body as it moves may be more effective.
Rocznik
Strony
79--85
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Human Information Engineering, Okayama Prefectural University, Soja-shi, Japan
Bibliografia
  • [1] ANSON E., ROSENBERG R., AGADA P., KIEMEL T., JEKA J., Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?, J. Neuroeng. Rehabil., 2013, 10 (1).
  • [2] ASSEMAN F.B., CARON O., CRÉMIEUX J., Are there specific conditions for which expertise in gymnastics could have an effect on postural control and performance?, Gait Posture, 2008, 27 (1), 76–81.
  • [3] DICKSTEIN R., LAUFER Y., Light touch and center of mass stability during treadmill locomotion, Gait Posture, 2004, 20 (1), 41–47.
  • [4] EARHART G.M., Dynamic control of posture across locomotor tasks, Mov. Disord., 2013, 28 (11), 1501–1508.
  • [5] HASEGAWA N., TAKEDA K., MANCINI M., KING L.A., HORAK F.B., ASAKA T., Differential effects of visual versus auditory biofeedback training for voluntary postural sway, PLOS ONE, 2020, 15 (12), e0244583.
  • [6] HASEGAWA N., TAKEDA K., SAKUMA M., MANI H., MAEJIMA H., ASAKA T., Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training, Gait Posture, 2017, 8, 188–193.
  • [7] JEKA J.J., Light touch contact as a balance aid, Phys. Ther., 1997, 77 (5), 476–487.
  • [8] JOHANNSEN L., LOU S.Z., CHEN H.Y., Effects and after-effects of voluntary intermittent light finger touch on body sway, Gait and Posture, 2014, 40 (4), 575–580.
  • [9] KŁOS K., GIEMZA C., DZIUBA-SŁONINA A., Body balance in people practicing snowboarding, Acta Bioeng. Biomech., 2019, 21 (1), 97–101.
  • [10] KODESH E., FALASH F., SPRECHER E., DICKSTEIN R., Light touch and medio-lateral postural stability during short distance gait, Neurosci. Lett., 2015, 584, 378–381.
  • [11] LION A., GAUCHARD G.C., DEVITERNE D., PERRIN P.P., Differentiated influence of off-road and on-road cycling practice on balance control and the related-neurosensory organization, J. Electromyogr. Kinesiol., 2009, 19 (4), 623–630.
  • [12] LOGAN D., KIEMEL T., DOMINICI N., CAPPELLINI G., IVANENKO Y., LACQUANITI F., JEKA J.J., The many roles of vision during walking, Exp. Brain Res., 2010, 206 (3), 337–350.
  • [13] MCKEON P.O., HERTEL J., Diminished plantar cutaneous sensation and postural control, Percept. Mot. Skills, 2007, 104 (1), 56–66.
  • [14] MEYER P.F., ODDSSON L.I.E., DE LUCA C.J., Reduces plantar sensitivity alters postural responses to lateral perturbations of balance, Exp. Brain Res., 2004, 157 (4), 526–536.
  • [15] MORIOKA S., FUKUMOTO T., HIYAMIZU M., MATSUO A., TAKEBAYASHI H., MIYAMOTO K., Changes in the equilibrium of standing on one leg at various life stages, Curr. Gerontol. Geriatr. Res., 2012.
  • [16] NAGANO A., YOSHIOKA S., HAY D.C., FUKASHIRO S., Light finger touch on the upper legs reduces postural sway during quasi-static standing, Motor Control, 2006, 10 (4), 348–358.
  • [17] OSHITA K., YANO S., Effect and immediate after-effect of lightly gripping the cane on postural sway, J. Physiol. Anthropol., 2016, 35 (1).
  • [18] OSHITA K., YANO S., Effect of haptic sensory input through a fluttering cloth on tandem gait performance, Hum. Mov. Sci., 2017, 55, 94–99.
  • [19] OSHITA K., YANO S., Influence of Haptic Sensory Input through Different Kinds of Clothing on Gait Performance, Appl. Sci., 2020, 10 (21), 7590.
  • [20] OSHITA K., YANO S., Influence of light finger touch on postural stability during upright stance with cold-induced plantar hypoesthesia, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2017, 2526–2529.
  • [21] OSHITA K., YANO S., The Effect of Lightly Gripping a Cane on the Dynamic Balance Control, Open Biomed. Eng. J., 2015, 9 (1), 146–150.
  • [22] PERRY S.D., MCILROY W.E., MAKI B.E., The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation, Brain Res., 2000, 877 (2), 401–406.
  • [23] POOLE J.L., Application of motor learning principles in occupational therapy, Am. J. Occup. Ther., 1991, 45 (6), 531–537.
  • [24] PUSZCZAŁOWSKA-LIZIS E., BUJAS P., OMORCZYK J., JANDZIS S., ŻAK M., Feet deformities are correlated with impaired balance and postural stability in seniors over 75, PLoS One, 2017, 12 (9), e0183227.
  • [25] RADHAKRISHNAN S.M., HATZITAKI V., PATIKAS D., AMIRIDIS I.G., Responses to Achilles tendon vibration during self-paced, visually and auditory-guided periodic sway, Exp. Brain Res., 2011, 213 (4), 423–433.
  • [26] REYNOLDS R.F., OSLER C.J., Mechanisms of interpersonal sway synchrony and stability, J. R. Soc. Interface., 2014, 11 (101).
  • [27] RONSSE R., PUTTEMANS V., COXON J.P., GOBLE D.J., WAGEMANS J., WENDEROTH N., SWINNEN S.P., Motor learning with augmented feedback: Modality-dependent behavioral and neural consequences, Cereb. Cortex., 2011, 21 (6), 1283–1294.
  • [28] SIGRIST R., RAUTER G., RIENER R., WOLF P., Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review, Psychon. Bull. Rev., 2013, 20 (1), 21–53.
  • [29] SOZZI S., CRISAFULLI O., SCHIEPPATI M., Haptic cues for balance: Use of a cane provides immediate body stabilization, Front. Neurosci., 2017, 2, 11 (Dec).
  • [30] URUSHIHARA R., YAMAMOTO M., Effect of human hand touch to the ventral upper arm on elbow-flexion force control task learning, Jpn. J. Physiol. Anthropol., 2019, 24 (3), 107–116.
  • [31] YASUDA K., SAICHI K., IWATA H., Haptic-Based PerceptionEmpathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults, Front. Med., 2018, 5, 149.
  • [32] WANG I., WANG L., XUE S., HU R., JIAN R., CH H., Gender differences of the improvement in balance control based on the real-time visual feedback system with smart wearable devices, Acta. Bioeng. Biomech., 2021, 23 (1), 163–171.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85512d1d-d554-4680-84b3-ffa6f9ad3b04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.