
ARCHIVES OF MECHANICS
Arch. Mech. 75 (1-2), 27–52, 2023, DOI: 10.24423/aom.4104

Generalized Oberst beam method for measuring viscoelastic
parameters of layered composite components

A. DOBRUCKI1), R. BOLEJKO1), P. NIERADKA1,2), A. KLIMEK1)

1)Chair of Acoustics, Multimedia and Signal Processing, Faculty of Electronics,
Photonics and Microsystems, Wroclaw University of Science and Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,
e-mail: andrzej.dobrucki@pwr.edu.pl (corresponding author)

2)KFB Acoustics, Mydlana 7, 51-502 Wrocław, Poland

This paper proposes two new methods of measuring the viscoelastic parameters
of materials. The methods are based on the composite beams’ resonant frequencies
measurement. The Young moduli and loss factors of the components are determined
by measuring the frequency response of a composite beam twice, each time with
different layer thickness ratios. A system of two equations is obtained, from which
Young’s moduli of the composite components are calculated. Similarly, two obtained
equations determine the loss factors. The results obtained by the proposed methods
are compared with those obtained by standard methods and then validated by exper-
iments and FEM simulations. It was noted that the developed models, as well as the
standard ones, are highly sensitive to the precision of the samples (material trimming
and the way of joining the composite elements). The proposed methods prove to have
an advantage over the standard ones in the matter of more frequent measurement
criterion fulfilment. The acknowledged criterion represents the existence of a sensi-
ble solution insensitive to measurement errors. This criterion, which assures that the
results are not prone to errors (for example negative loss factors) is met in 100% of
cases in one of the methods, compared to 65% for standard methods.
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1. Introduction

In modern engineering problems, the cost of making physical prototypes of
products could be very high. When there is a need to modify a particular product
component, assessing the impact of this change on the whole system behaviour
is an important task (e.g. an increase in noise generation or vibration levels). In
this case, the so-called virtual prototyping involving numerical simulations’ exe-
cution on a calibrated model of the product or machine under test is much more
cost-effective. An important factor determining the high quality of the vibroa-
coustic model is the accurate knowledge of the considered materials’ mechanical
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parameters. The literature provides numerous methods for the determination
of viscoelastic parameters. These include methods based on ultrasonic measure-
ments [1], impulse methods [2], Dynamic Mechanical Analysis (DMA) [3], Dy-
namic Mechanical Thermal Analysis (DMTA) [4], Broadband Viscoelastic Spec-
troscopy (BVS) [5], transfer function methods [6–8], and others (e.g. the material
loss factor can be determined using the reverberation time method [9], modal
curve fitting [10], or the SEA statistical method [11]. Each of the mentioned
procedures has individual advantages and disadvantages. This paper focuses on
the methods that take advantage of the relationship between the materials’ me-
chanical parameters and the resonant frequencies of beams made from given
materials [12–18]. The resonance method (Oberst beam method) is standardized
by ASTM in [19] as well as by other standardization organizations [20, 21] in
equivalent documents. Hitherto, some authors raised the issue of the mentioned
method course, i.e. the excitation and sensor effect [22, 23]. The issue of mea-
suring non-magnetic materials with the Oberst beam method using non-contact
exciters was raised, and solutions based on utilizing lightweight magnetic parti-
cles or discs was proposed [15]. Other researchers pointed out the effect of many
set-up and post-processing parameters on the final results [16, 17]. Those param-
eters include frequency resolution in frequency responses, the distance between
the beam tip and the electromagnetic exciter, the excitation amplitude, and sam-
ple preparation. A different study investigates the effect of sample thickness on
the damping loss factor [18].

There also have been publications removing the requirement for non-contact
excitation in this method [24]. A great advantage of resonance methods is the
relatively simple testing methodology. On the other hand, one of the disadvan-
tages of resonance methods is the poor numerical conditioning that can occur
when the strict conditions set in [19] are unmet. This situation can force the
tester to prepare multiple samples of the same composite to find the ones that
will produce a physically meaningful result. In this article, the derived methods
are related to those found in the standard [19]. Measurements were performed on
a set of composite beams in order to compare the existing and proposed methods.

The structure of the paper is as follows:
Section 2 discusses the existing methods for measuring viscoelastic parame-

ters based on the measurement of beam resonance frequencies and the width of
resonance curves. Moreover, the section proposes two new methods.

Section 3 describes the numerical validation run, including an assessment
of the influence of the accuracy of preparing samples on the obtained results.

Section 4 presents details of the carried out experiments.
Section 5 discusses the results of the tests, in particular, the influence of

the adhesive as well as the parameters and type of the core (also a core made
of PVC, which is not recommended in the standards) on the determined rubber
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jacket parameter. Each of the mentioned factors was considered separately in the
context of new and existing methods (except for the influence of the adhesive,
which was considered only for the standard method).

Section 6 summarizes the carried out research and presents the resulting
conclusions.

In this article, the following words are used interchangeably: jacket, coating,
shell, sheath and sheathing.

2. Theory

The main objective of these measurement methods is to determine the vis-
coelastic parameters of materials unable to form a self-supporting beam due to
their limpness. One solution may be to use the quasi-static method [25], where
both beam ends are clamped. An alternative method discussed in this article is to
use base beams made of a rigid material (e.g., steel), which forms a stable struc-
ture with a tested flaccid material (e.g., rubber). Therefore, the resulting com-
posite consists of a base beam (core) acting as the supporting element and one or
two shells made of viscoelastic material being the main testing element. Conse-
quently, the frequency response of the composite beams (and possibly the cores
themselves) could be assessed during the laboratory measurements. Frequency
response provides two main quantities for each beam resonance: its frequency and
half power bandwidth. It is then, by using the developed mathematical models,
possible to extract the coating parameters.

In the first part of this section, a basic model for determining the viscoelastic
parameters of the base beam and the effective viscoelastic parameters of the
composite beam are discussed.

In the second part of the section, models known from ASTM E-756 [19] for
the determination of shell viscoelastic parameters are presented.

In the third part, new methods that can be an alternative to those described
in the standards are introduced. By using these methods, one can determine the
material parameters of both the base beam and the coating.

2.1. Basis of the method

The method involves measuring the resonant frequencies of a rectangular
cross-section beam clamped at one end and free at the other. The successive
resonant frequencies of the beam are expressed by the formula:

fi =
γi
l2

√
EI

ρS
, i = 1, 2, 3, . . . ,(2.1)

γ1 = 0.55966, γ2 = 3.5074, γ3 = 9.8209, γ4 = 19.2450, . . . ,
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where: l – beam length, E – Young’s modulus, rS – surface density, I – moment
of inertia of the cross section.

If the beam is homogeneous, Young’s modulus and density are parameters of
the base material. The moment of inertia is then:

(2.2) I = bh3/12,

where: b – width, h – thickness of the beam.
The surface density is given by the formula:

(2.3) ρS = ρ · S,

where: ρ – density of the beam material, S – cross section area.
In the following section, expressions for theEI and surface density of beams ρS

with a sandwich structure are derived. These parameters, known as effective pa-
rameters, depend on the thickness andmaterial parameters of the individual layers.

Knowing the density and geometrical parameters of the beam, it is possible
to determine Young’s modulus by measuring any resonance frequency (usually
the first one). The resonant frequency is defined as the frequency at which the
local maximum of the deflection amplitude of the flexural stimulated beam occurs
(Fig. 1).
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Fig. 1. Resonance curve.

From Eq. (2.1), taking into account (2.2) and (2.3), the Young modulus could
be represented as:

(2.4) E = 12
f2
i l

4ρ

γ2
i h

2 .
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Young’s modulus of lossy materials is a complex quantity E = E(1 + jη).
The quantity η is called the loss factor. It usually has very low value, even for
highly lossy materials, so the real quantity E can be taken as Young’s modulus.
The value of the loss factor is evaluated by measuring two frequencies below
and above the resonance frequency so that the vibration amplitude decreases to
Amax/

√
2. These frequencies are denoted in Fig. 1 as f− and f+. The loss factor

is calculated from the formula:

(2.5) η =
f+ − f−

fi
.

Both E and η could depend on frequency.

2.2. Oberst and modified Oberst methods for the identification
of damping material parameters

In this article, we examine two of the three models proposed in the ASTM
standard.

The first model is the Oberst Beam Model (referred to in this article as O),
where the composite beam consists of a core and a sheathing attached to one side
of the beam. The second model is the Modified Oberst Beam Model (referred to
in this article as MO), where the composite beam consists of a core and sheathing
attached to both sides of the beam.

The first step of the standardized methods is to determine the natural fre-
quencies and the widths of the resonance curves of the base (sometimes called
bare) beam. Then, by using the model presented in the previous section, Young’s
modulus and the core loss factor are calculated. The next step is to repeat the
described procedure for the composite beam to obtain composite Young’s mod-
ulus and the loss factor. With these data, one can determine the parameters of
the shell using the relationships presented in the standard. To avoid numerical
errors, the following condition must be met:

(2.6)
f2
ieff

f2
ib

(
1 +

ρ2h2

ρ1h1

)
≥ 1.01,

where fieff is the effective i-th resonant frequency of the composite, fib is the
i-th resonant frequency of the bare beam, and r2 and h2 are, respectively, the
density and thickness of the sheathing for the O method and the density and
thickness of both layers of the sheathing for the MO method. The product ρh is
the surface density.

2.3. Identification of the parameters of damping materials – proposed methods

In this section, alternative methods to the standard are derived for determin-
ing the viscoelastic parameters of materials using flexural vibrations of composite
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beams. Unlike the methods described in the ASTM standard, the proposed ones
do not require a separate core measurement.

The first approach (referred to here as PM1; Proposed Method 1) is equiv-
alent to the standard MO method. Unlike the MO method, the PM1 method
measures a beam twice, each time with a double-sided shell, but for two different
shell thicknesses. Two systems of linear equations are obtained. The first system
delivers Young’s modulus of the base beam and jacket material, while the second
system gives the corresponding loss factors.

The second method (called here PM2; Proposed Method 2) is equivalent to
the standard method O. In contrast to method O, in the PM2, the beam with one-
sided sheathing is measured twice for two different sheathing thicknesses. One
system of nonlinear equations and one system of linear equations are obtained.
The first system provides Young’s modulus of the base beam and the sheathing,
while the second system determines the loss factors of the base beam and the
sheathing.

2.3.1. The PM1 method. The geometry of the problem is as follows. A beam
of length l is made of a composite consisting of three layers. The middle layer
(the core of the composite) has a thickness of h1 and is covered on both sides
by a material with a thickness of h2/2 on each side, constituting the sheathing
of the composite (Fig. 2).

Figure 2 shows the z-axis. The zero point of this axis is located at the center
of the beam’s cross-section. The effective value of the product of EI is determined
from the formula:

(EI)eff =

h1+h2
2∫

−h1+h2
2

E(z)z2b dz(2.7)

= E2b

−h1
2∫

−h1+h2
2

z2 dz + E1b

h1
2∫

−h1
2

z2 dz + E2b

h1+h2
2∫

h1
2

z2 dz,

where E1 and E2 are Young’s moduli of the composite core and sheathing, re-
spectively. After calculating and ordering the integrals, the following is obtained:

(EI)eff =
bh3

2

12

[
E2

(
3
h2

1

h2
2

+ 3
h1

h2
+ 1

)
+ E1

h3
1

h3
2

]
(2.8)

=
bh3

2

12

[
E2

(
h1

h2
+ 1

)3

+

(
E1 − E2

)
h3

1

h3
2

]
.
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Fig. 2. Cross-section through a symmetric triple-layer composite beam.

The effective value of the product ρS is:

(2.9) (ρS)eff = ρ1bh1 + ρ2bh2.

Inserting (2.8) and (2.9) into Eq. (2.1) for the i-th resonant frequency, one
obtains:

(2.10) fi =
γi

l2

(√
EI

ρS

)
eff

=
γi√
12

h2

l2

√√√√√E2

(
3
h21
h22

+ 3h1h2 + 1
)

+ E1
h31
h32

ρ1
h1
h2

+ ρ2

.

By measuring the resonant frequency of the beam twice, for two different
sheathing thicknesses h2 and h′2, a system of two linear equations is obtained,
from which the values of E1 and E2 are determined.

Let us assign h1/h2 by κ, and h1/h
′
2 by κ′. Then, the system of equations

has the form:

(2.11)

{
κ3E1 + (3κ2 + 3κ+ 1)E2 = Aκ2f2

i (ρ1κ+ ρ2),

κ′3E1 + (3κ′2 + 3κ′ + 1)E2 = Aκ′2f ′2i (ρ1κ
′ + ρ2),

where:

A =
12l4

γ2
i h

2
1

.

The principal determinant of this system of equations is:

∆ = κ3(3κ′2 + 3κ′ + 1)− κ′3(3κ2 + 3κ+ 1)(2.12)

= (κ− κ′)[3κ2κ′2 + κκ′(3κ+ 3κ′ + 1) + (κ2 + κ′2)].

Because h′2 > h2 then κ > κ′ and formula (2.12) is always positive.
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The determinants obtained by replacing respectively the 1st and the 2nd
column of the main matrix by the free column (on the right-hand side of the
system (2.11)) are:

∆1 = A[ρ1(f2
i κ

3 − f ′2iκ′
3
) + (3ρ1κκ

′ + ρ2)(f2
i κ

2 − f ′2iκ′
2
)(2.13a)

+ 3κκ′(ρ1κκ
′ + ρ2)(f2

i κ− f ′
2
iκ
′) + 3ρ2κ

2κ′
2
(f2
i − f ′

2
i )],

∆2 = A[ρ1κ
3κ′

3
(f ′

2
i − f2

i ) + ρ2κ
2κ′

2
(f ′

2
iκ− f2

i κ
′)].(2.13b)

Young’s moduli are calculated from the formulae:

(2.14) E1 =
∆1

∆
, E2 =

∆2

∆
.

When h′2 > h2 and κ′ < κ, then the eigenfrequencies are f ′i < fi. Then ∆1 > 0
and also Young’s modulus of the sheathing E1 > 0. Of course, Young’s modu-
lus E2 is also greater than zero, but the calculated value of ∆2 can be negative
because of measurement errors. The following condition must be fulfilled for the
value ∆2 to be positive:

(2.15a) ρ1κ
3κ′3(f ′2i − f2

i ) + ρ2κ
2κ′2(f ′

2
iκ− f2

i κ
′) > 0

or

(2.15b) ρ2(f ′21 κ− f2
i κ
′) > ρ1κκ

′(f2
i − f ′2i )

or

ρ2

(
f ′2i
κ′
− f2

i

κ

)
> ρ1(f2

i − f ′2i ),(2.15c)

ρ1h1 + ρ2h2

ρ1h1 + ρ2h′2
f2
i < f ′2i < f2

i .(2.15d)

When h2 = 0 (bare beam) then 1/κ = 0, and the sheathing appears only in
the second Eq. (2.11) (h′2 > 0), the formula (2.15c) has the form:

(2.16a) ρ2
h′2
h1
f ′2i > ρ1(f2

i − f ′2i ).

After transformations the result is:

(2.16b)
f ′2i
f2
i

(
ρ2

ρ1

h′2
h1

+ 1

)
> 1,

which is the requirement (2.6) of the ASTM standard [19]. The formula (2.15c)
is therefore a generalized condition from the standard.
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To ensure that the sheath material in the measurements is the same, often
h′2 = 2h2, which is obtained by sticking together two layers cut from the same
sheet of material. Then κ′ = κ/2 and condition (2.15c) has the form of:

(2.17)
ρ2

ρ1

h2

h1
(2f ′2i − f2

i ) > f2
i − f ′2i .

In this paper, the value h′2 was chosen as double of h2. Note that there is
no beam width in Eq. (2.10). However, the densities of the two materials are
required and must be determined by other means, for example by weighting the
two samples. In the standard modified Oberst beam method condition (2.16b)
is relatively often not fulfilled, whereas in the PM1 method condition (2.17) was
fulfilled in all cases. This is an undoubted advantage of the proposed methods.

When the composite form of Young’s modulus for both materials is taken,
the effective loss factor of the composite is given by the formula:

(2.18) ηeff =
E2η2

(
3
h21
h22

+ 3h1h2 + 1
)

+ E1η1
h31
h32

E2

(
3
h21
h22

+ 3h1h2 + 1
)

+ E1
h31
h32

.

Once Young’s moduli have been determined, two values of the effective loss
factor for two different ratios h1/h2 are determined by measuring the widths of
the resonance curves, with the desired loss factors of the composite components
then being obtained from the system of equations.

2.3.2. The PM2 method. The geometry of the problem is as follows. A beam of
length l is made of a composite consisting of two layers. The upper layer is made
of material with Young’s modulus E1, and its thickness is h1. The lower layer is
made of material with Young’s modulus E2, and its thickness is h2 (Fig. 3).
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Fig. 3. Cross-section through a double-layer composite beam.

The z-axis is shown in Fig. 3. The zero point of this axis should lie in the
neutral plane perpendicular to the z-axis, below which the planes are in com-
pression during deflection, and above which they are in tension, or vice versa.
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The neutral plane is bent, but not compressed or stretched. The point lying on
the z-axis and on the neutral plane is denoted in Fig. 3 as z0. The question of
the deflection of a two-layer beam, or generally of a multilayer beam asymmetric
about the z-axis, is more complex than that of a three-layer symmetric beam,
because the value z0 is a priori unknown and must be determined.

Let us place the zero point on the z axis at the junction of two materials.
The effective value of the EI product is:

(EI)eff = b

h1∫
−h2

E(z)(z − z0)2 dz(2.19)

= b

[
E1

h1∫
0

(z − z0)2 dz + E2

0∫
−h2

(z − z0)2 dz

]
.

After calculating the integrals and ordering the expressions with respect to the
z0 powers, one obtains:

(2.20) (EI)eff =
b

3
[3(E1h1 + E2h2)z2

0 − 3(E1h
2
1 − E2h

2
2)z0 + (E1h

3
1 + E2h

3
2)].

This value is determined from the minimum value condition relative to z0. By
calculating the derivative and comparing it to zero:

(2.21)
d(EI)eff
dz0

= b[2(E1h1 + E2h2)z0 − (E1h
2
1 − E2h

2
2)] = 0

from which the value of z0 equals:

(2.22) z0 =
1

2
· E1h

2
1 − E2h

2
2

E1h1 + E2h2
.

The quantity z0 can be positive or negative depending on the sign of the numer-
ator of expression (2.22). Inserting z0 from Eq. (2.22) into Eq. (2.20) gives, after
ordering, an expression for (EI)eff , in which all quantities are known:

(2.23) (EI)eff =
b

12
· E

2
1h

4
1 + E1E2h1h2(4h2

1 + 6h1h2 + 4h2
2) + E2

2h
4
2

E1h1 + E2h2
.

K. Sanliturk and H. Koruk in [26, 27] proposed an alternative, more general
method for finding the position of the z0 reference axis.

It is easy to check that if E1 = E2 = E, then z0 = 0, h1 = h2 = h/2,
and the value of the moment of inertia is expressed by formula (2.2). Formula
(2.23) defining (EI)eff does not depend on the choice of the starting point of the
z axis (z = 0). Changing the starting point results in the change of the numerical
value z0, so that this point will always lie in the same place with respect to the
geometry of the beam. The eigenfrequencies can be determined by inserting the
effective quantities (2.23) and (2.9) into the formula (2.1):
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(2.24) fi =
γi√
12

h2

l2

√√√√√E2
1
h41
h42

+ E1E2
h1
h2

(
4
h21
h22

+ 6h1h2 + 4
)

+ E2
2(

E1
h1
h2

+ E2

)(
ρ1

h1
h2

+ ρ2

) .

By measuring the resonance frequencies for the two thicknesses h2 and h′2,
two equations are obtained, from which the Young’s moduli E1 and E2 are then
determined. These equations are not linear with respect to Young’s modulus, as
is the case for a symmetrical three-layer composite, and therefore their solution
is more difficult. Similarly, as in the PM1 method, in this paper the two values
of h2 and h′2 = 2h2 were chosen. Condition (2.17) must also be met, as in the
PM1 method.

The expression from which the loss factor can be determined is also more
complex. Taking the composite form of Young’s modulus and omitting expres-
sions of orders higher than the first with respect to the loss factors η1 and η2,
the result is:

Re(EI) =
G

(E1h1 + E2h2)2
,(2.25a)

Im(EI) =
E1h1[E2

1h
4
1 + 2E1E2h

3
1h2 + E2

2h
2
2(4h2

1 + 6h1h2 + 3h2
2)]

(E1h1 + E2h2)2
η1(2.25b)

+
E2h2[E2

2h
4
2 + 2E1E2h1h

3
2 + E2

1h
2
1(3h2

1 + 6h1h2 + 4h2
2)]

(E1h1 + E2h2)2
η2.

The quotient of the imaginary part (2.25b) and the real part (2.25a) of the
quantity EI is the effective damping factor:

ηeff =
Im(EI)

Re(EI)
= αη1 + βη2,(2.26a)

α =
E1h1[E2

1h
4
1 + 2E1E2h

3
1h2 + E2

2h
2
2(4h2

1 + 6h1h2 + 3h2
2)]

G
,(2.26b)

β =
E2h2[E2

2h
4
2 + 2E1E2h1h

3
2 + E2

1h
2
1(3h2

1 + 6h1h2 + 4h2
2)]

G
,(2.26c)

where

G = E3
1h

5
1 + E1E2h1h2(5E1h

3
1 + 6E1h

2
1h2 + 4E1h1h

2
2

+ 4E2h
2
1h2 + 6E2h1h

2
2 + 5E2h

3
2) + E3

2h
5
2.

This is a linear equation with respect to η1 and η2. By measuring the effec-
tive loss factors for two different layer thicknesses and having Young’s modulus
determined on the same basis, a system of two linear equations from which the
loss factors η1 i η2 can be extracted is obtained.
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It must be pointed out that both E and η are frequency dependent. Therefore,
in order to obtain results for different frequencies, one has to alter the beam
length or measure different bending modes.

3. Numerical validation

A numerical validation of the methods derived in the previous part of the
article was carried out. For this purpose, a virtual FEM model of the composite
was developed in Comsol Multiphysics software. The prepared model was equiv-
alent to a composite that was also tested in the laboratory (dimensions of the
samples can be found in Table 5). The composite consisted of a steel beam as
the core, and rubber as the shell. Four different variations of the model were
developed in order to test methods O, MO, PM1 and PM2. An example of the
developed model is shown in Fig. 4.

a) b)

Fig. 4. FEM model, variant for testing method O; a) 1st mode of the composite vibration
(20.4Hz), b) 2nd mode of the composite vibration (128.0Hz).

Young’s modulus and the loss factor entered into the model was an average
value obtained from measurements (a description of the course of measurements
and other beam parameters are presented in part 4 of the paper). The adopted
values E and η are summarized in Table 1. Those assumed values of E and η
are further referenced as VATM (value assigned to the model).

Table 1. E and η parameters used for the FEM modelling.

Layer Young’s modulus, E [GPa] Loss factor, η [–]
Steel (core) 1.91E+02 0.00315
Rubber (sheathing) 3.50E-02 0.89000

The validation consisted of 2 stages. The first stage involved comparing the
rubber parameters E2, η2 extracted by methods O, MO, PM1 and PM2, with
the values being directly entered into the model (Table 1). The performance
of the PM1 and PM2 methods in determining the core parameters E1 and η1
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in comparison with the direct measurement was also evaluated. At this stage,
any uncertainties associated with the preparation of the composite samples were
eliminated, as the adopted geometry was ideal. Stage 2, on the other hand,
involved estimating the effect of sample precision on the obtained results.

3.1. Influence of the applied method

The analysis consisted of FEM simulations in the frequency domain to de-
termine the resonance curves of the test specimens. The specimen was excited
uniformly across the surface from one side, while from the other side of the spec-
imen the response (vibration velocity) averaged across the beam was collected.
This allowed for the reading of the natural frequencies and the widths of the
resonance curves. The remaining procedure was carried out as described in the
theoretical part of this article (implementing equations of methods O, MO, PM1,
and PM2). Parameters of steel have also been determined by performing a direct
virtual measurement on a bare steel beam without any sheathing (standardized
method). Finally, it was possible to assess the accuracy of mathematical models
by computing a relative error of E and η. The error was calculated in relation
to the true value assigned to the model (VATM). The analysis was performed
for 1 and 2 modes of vibrations. The obtained steel and rubber parameters are
summarized in Tables 2 and 3, respectively. The obtained results indicate that
the tested methods, even in ideal conditions, do not allow the real parameters
of the materials forming the composite to be reproduced with an infinitely high
precision.

Table 2. Steel parameters determined by virtual FEM and their errors with respect
to VATM.

Method
1st resonance 2nd resonance

E1 η1 E1 η2

value [GPa] error value [–] error value [GPa] error value [–] error
VATM 1.91E+02 0.0% 0.00315 0.0% 1.91E+02 0.0% 0.00315 0.0%
PM1 1.92E+02 0.5% 0.00405 28.4% 1.92E+02 0.7% −0.00112 −135.7%
PM2 1.93E+02 0.9% 0.00377 19.7% 1.93E+02 0.9% 0.00348 10.4%
Direct 1.93E+02 1.0% 0.00314 −0.4% 1.93E+02 1.0% 0.00314 −0.3%

The highest precision in determining the sheathing parameters was shown
by PM2 for the 2nd resonance, where an error of 2.3% in the determination
of Young’s modulus and an error of −0.5% in the determination of the loss
factor were obtained. The lowest precision in the determination of the sheathing
parameters was shown by PM1 for the 1st resonance, where an error of 14.9%
in the determination of E2, and an error of −10.7% in the determination of d2

was obtained.
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Table 3. Rubber parameters determined by virtual FEM and their errors with respect
to VATM.

Method
1st resonance 2nd resonance

E2 η1 E2 η2

value [GPa] error value [–] error value [GPa] error value [–] error
VATM 3.50E-02 0.0% 0.89 0.0% 3.50E-02 0.0% 0.89 0.0%

O 3.74E-02 6.9% 0.96 8.3% 3.53E-02 0.9% 1.01 13.4%
MO 3.75E-02 7.1% 0.91 2.5% 3.61E-02 3.2% 0.94 5.7%
PM1 4.02E-02 14.9% 0.79 −10.7% 3.74E-02 6.7% 0.93 4.1%
PM2 3.84E-02 9.7% 0.83 −6.9% 3.58E-02 2.3% 0.89 −0.5%

For the determination of the core parameters, it is best to use the direct
method, as it gives the lowest errors in both the determination of E1, and η1.

3.2. Influence of sample precision

The analysis of the influence of sample precision involved the same steps as
the analysis of the influence of the method used. However, it was limited to
method O and the first vibration mode only. In this step, intentional errors were
introduced into the system geometry to reproduce situations that might occur
during a real measurement situation. In particular, the influence of an inaccurate
rubber cut-out (increments ∆l) on both the immobilized side and on the free
side of the beam was evaluated. The differences between ideal immobilization of
the beam edge and the use of a steel cube on the beam edge were also checked.
The steel cube resembled the cube used in real measurements (see Fig. 5) and it
allowed a slight movement of the beams at the “fixed” end. It was modelled as
an additional FEM linear elastic material made of steel.

Fig. 5. Examples of the tested steel-core composites.
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Obtained Young’s moduli and rubber loss factors are summarized in Table 4.
From Table 4 it can be concluded that the largest errors occur when the sample
is inaccurately made near the free edge of the composite (errors can then exceed
even 100%). In contrast, the introduction of a steel cube did not significantly
change the obtained viscoelastic parameters when compared to the use of an
ideal boundary condition.

Table 4. Influence of the precision of cutting out and attaching the shell to the core on the
determined viscoelastic parameters.

No. Sketch
∆l,

clamped end
[mm]

∆l,

free end
[mm]

Rubber parameters Error

E2 [GPa] η2 [–] E2 η2

1 Values assigned to the model – – 3.50E-02 0.89 0% 0%

2 ... 0 0 3.74E-02 0.96 7% 8%

3 ... 0 0 3.68E-02 0.98 5% 10%

4 ... −1 +1 2.34E-02 1.35 −33% 52%

5 ... −2 +2 1.38E-02 2.24 −61% 151%

6 ... 0 −1 4.58E-02 0.79 31% −11%

7 ... 0 −2 5.47E-02 0.67 56% −25%

8 ... −1 0 3.22E-02 0.99 −8% 11%

9 ... −2 0 3.21E-02 0.98 −8% 10%

10 ... 0 +1 2.82E-02 1.27 −19% 43%

11 ... 0 +2 1.98E-02 1.80 −44% 102%
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4. Tested materials and measurement methods

4.1. The measured composite beams

Table 5 summarizes basic information about the tested composites, and Fig. 5
shows examples of the composite beams used in the measurements.

Table 5. Parameters of the tested composites.

No. Core ρ1 [kg/m3] h1 [mm] Sheathing ρ2 [kg/m3] h2 [mm] l [cm]

1 Steel 7827 1 rubber 1359 3 or 6 (PM2)
6 or 12 (PM1)

18.0

2 PVC 1408 2 rubber 1359 3 or 6 (PM2)
6 or 12 (PM1)

13.0

Rubber cut from a 3mm thick sheet was used as the test material. To ensure
that the parameters of the rubber of different h2 thicknesses were the same, two
thicknesses of the same rubber were used: 3mm (on both sides for the PM1
method, or on one side for the PM2 method), or 6mm (on both sides or on
one side). In the latter case, two sheets of rubber were glued together. When
assembling the composites, care was taken to ensure that the layer of adhesive
used was as thin as possible. The prepared configurations of the beams allowed for
the comparison of the O, MO, PM1, and PM2 methods, and also the assessment
of the influence of the type of adhesive (cyanoacrylate, epoxy, butaprene) and
core material (steel, PVC). For each tested variant, 5 identical composite samples
were made in order to determine the mean value and standard deviation. The
lengths of the steel and PVC beams were chosen so that resonances in similar
frequency ranges could be obtained.

4.2. Measurement stand and experiments

The measurements were made for a beam that was rigidly clamped at one
end to the stand, as shown in Fig. 6. The measurement setup met the require-
ments of ASTM E756-05 [13]. The free end of the beam was vibrated by the
BrüelKjær MM0002 non-contact electromagnetic actuator. The excitation was
a sinusoidal signal with an amplitude of 10 V that was swept logarithmically
in a given frequency range. Beam vibrations were recorded using the Polytec
PSV400M2 laser vibrometer. With the help of the vibrometer, the frequency
response of the vibration velocity was analyzed using the 6400 lines FFT. The
VD-07 speed decoder, with a resolution of 0.02 µm/s/

√
Hz, was used. To elimi-

nate noise, four times averaging was used for each measurement. The vibrations
of the beam were measured in its center and at a distance of about 3/4 of the
length of the beam from the rigid clamp. The measurements were carried out at
room temperature (about 22◦C).
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rigid clamp

electromagnetic
actuator
MM0002

bar under the test

Doppler laser
vibrometer
PSV400M2

Fig. 6. Measurement setup.

The smallest frequency change that was possible with the laser vibrometer
was 0,015262 Hz. This frequency resolution around the resonance curve was too
low to accurately determine the loss factor. However, the measurements were not
noisy, so an interpolation of the resonance curves with third order splines was
used. An example of the measurement result and the approximation is shown
in Fig. 7a. Figure 7b represents the full exemplary resonance curve.

a) b)a)
b)

Resonance curve of basic steel beam

Fig. 7. a) Example of the resonance curve measurement result (black dots) and third-order
spline approximation (solid line), b) Exemplary resonance curve of basic steel beam with 1st

and 2nd resonance.
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5. Results of measurements and discussion

In this section, the results obtained by the proposed methods (PM1 and PM2)
are compared with the ASTM models (O and MO). Only two bending modes
are investigated, because of low signal to noise ratio in the frequency response
at higher frequencies. Results are shown for all measured samples. Each sample
is labeled with a number (0, 1, . . . , N). The absence of a marker in the graphs
presented in this section of the article means that there is no measurement
available for that sample. There is a significant scatter in the presented results
between both the samples and the methods. However, the discrepancies obtained
are very similar to those obtained during the numerical validation of the model,
where the effect of sample preparation accuracy on the results was checked.
This means that the scatter seen in the graphs is a characteristic feature of the
resonance methods.

5.1. Base beam material parameters

Figure 8 shows determined Young’s moduli, while Fig. 9 shows the loss fac-
tors of the cores (steel and PVC). Tables 6 and 7 summarize the mean values
and standard deviations. In Figs. 8 and 9, outliers were intentionally left out to
a) b)

c) d)

Fig. 8. Young’s moduli of the core for all the tested samples, H – PM1, � – PM2, • – direct
measurement; a) steel, 1st resonance, b) steel, 2nd resonance, c) PVC, 1st resonance,

d) PVC, 2nd resonance.
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a) b)

c) d)

Fig. 9. Core loss factor for all the tested samples, H – PM1, � – PM2, • – direct
measurement; a) steel, 1st resonance, b) steel, 2nd resonance, c) PVC, 1st resonance,

d) PVC, 2nd resonance.

illustrate the scatter of the results and were also ignored when determining the
mean value and standard deviation. Parameters of steel have been determined
indirectly using the proposed methods: PM1 and PM2 and by performing di-
rect measurement on a bare streel beam without any sheathing (standardized
method). The obtained results show that direct measurement of the mechanical
properties of the core gives far more consistent results when compared to the
proposed methods.

Table 6. Young’s modulus of the core material measurement statistics – mean value
(standard deviation).

Young modulus, E [GPa]

Material
PM1 PM2 Direct measurement

1 res. 2 res. 1 res. 2 res. 1 res. 2 res.

Steel
1.81E+02
(6.20E+00)

1.92E+02
(7.94E+00)

1.89E+02
(1.02E+01)

2.00E+02
(6.12E+00)

1.98E+02
(5.87E+00)

2.09E+02
(3.10E+00)

PVC
2.58E+00
(3.91E-01)

3.46E+00
(2.00E-01)

2.85E+00
(4.39E-01)

3.30E+00
(4.31E-01)

3.01E+00
(1.73E-01)

3.60E+00
(1.67E-01)
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Table 7. Table 7. Core loss factor measurement statistics – mean value
(standard deviation).

Loss factor, η2 [-]

Material
PM1 PM2 Direct measurement

1 res. 2 res. 1 res. 2 res. 1 res. 2 res.

Steel
1.73E-03
(1.28E-03)

1.59E-03
(1.01E-03)

3.77E-03
(2.47E-03)

1.78E-03
(3.18E-04)

2.52E-03
(4.75E-04)

9.38E-04
(2.14E-04)

PVC
6.29E-03

(–)
2.99E-02
(9.23E-03)

4.24E-02
(–)

2.88E-02
(2.93E-02)

2.65E-02
(2.36E-03)

3.17E-02
(1.14E-03)

5.2. Influence of glue type

A study of the effect of the type of adhesive on the identification of rubber
parameters was only carried out for method O on the steel beam. Figure 10
shows determined Young’s moduli, while Fig. 11 shows the loss factors. Table 8

a) b)

Fig. 10. Young’s modulus of the rubber with regards to the adhesive of all the tested
specimens (steel core, method O), H – cyanoacrylate adhesive, � – butaprene, • – epoxy

adhesive; a) 1st resonance, b) 2nd resonance.

a) b)

Fig. 11. Rubber loss factor in relation to the adhesive used for all the tested samples (steel
core, method O), H – cyanoacrylate adhesive, � – butaprene, • – epoxy adhesive;

a) 1st resonance, b) 2nd resonance.
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Table 8. Measurement statistics: Young’s modulus and loss factor with regards to the used
adhesive – mean value (standard deviation).

Type of adhesive
E [GPa] η [–]

1st resonance 2nd resonance 1st resonance 2nd resonance

Cyanoacrylate
3.50E-02

(–)
1.96E-02
(4.58E-03)

0.89
(–)

1.03
(0.24)

Butaprene
3.29E-02
(2.33E-02)

1.49E-02
(–)

0.57
(0.34)

1.26
(–)

Epoxy
2.56E-02
(7.89E-03)

1.54E-02
(–)

0.61
(0.23)

1.36
(–)

summarizes the mean values and standard deviations. It can be seen from the
figures that only a small proportion of the measurements were not affected by
numerical errors. All the samples with a large numerical error were simultane-
ously associated with a failure to fulfil condition (2.16b). Attention is drawn to
the very large values of the loss factor obtained with the O method. Similar large
values are also be shown for the MO method later in the paper.

Theoretical models explaining the influence of the adhesive on the viscoelastic
parameters were not developed for this publication (any interested readers should
refer to [28]).

5.3. Influence of the base beam material

Figure 12 shows Young’s moduli, while Fig. 13 shows the rubber loss factors
determined by all the tested methods. Tables 9 and 10 summarize the mean
values and standard deviations. The following relationships were observed:

For methods O and MO, measurement on a core made of PVC generally
results in the determination of higher values of E2 and smaller values of η2 when
compared to the measurement on the steel core. For the PM1 and PM2 methods,
measurement on a PVC core generally results in smaller values of E2 and higher
values of η2 when compared to the measurement on the steel core.

Note that in Figs. 12 and 13, all markers for PM1 and PM2 are present. It
means that for each sample, a result that is a positive number is obtained. Con-
versely, some markers describing O and MO are missing because a negative value
of E or η was obtained, and this result is not plotted in the graph. A numerical
error (missing values) from O and MO were present for those samples where
the criterion described by an inequality (2.6) was not met. On the other hand,
samples used in the PM1 method fulfilled the equivalent criterion (2.15c), and no
numerical errors were present. In this article, we did not derive the criterion for
the PM2 method, but one can see in the graph that no PM2 samples providing
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a) b)

c) d)

Fig. 12. Young’s modulus of the rubber determined by all the tested methods, H – O,
� – MO, • – PM1, + – PM2; a) steel, 1st resonance, b) steel, 2nd resonance, c) PVC,

1st resonance, d) PVC, 2nd resonance.

negative values are present. This clearly shows the advantage of the proposed
methods. Experiments showed that it is less troublesome to meet (2.15c) criterion
than (2.6). This directly translates into the fact that using PM1 and PM2 ap-

Table 9. Statistics of measuring the rubber’s Young’s modulus with regards to the used
method – mean value (standard deviation).

Young modulus, E [GPa]

Method
Steel PVC

1st resonance 2nd resonance 1st resonance 2nd resonance
O 3.50E-02

(–)
1.96E-02
(4.58E-03)

4.09E-02
(8.56E-03)

4.58E-02
(7.97E-04)

MO 1.17E-02
(2.37E-03)

1.48E-02
(4.39E-03)

3.20E-02
(7.78E-03)

4.57E-02
(2.51E-03)

PM1 5.22E-02
(4.62E-03)

6.12E-02
(3.01E-03)

4.46E-02
(5.09E-03)

4.80E-02
(4.32E-03)

PM2 4.16E-02
(1.89E-02)

6.04E-02
(9.54E-03)

4.29E-02
(1.05E-02)

5.52E-02
(9.86E-03)
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a) b)

c) d)
 

Fig. 13. Rubber loss factor determined by all the tested methods, H – O, � – MO, • – PM1,
+ – PM2; a) steel, 1st resonance, b) steel, 2nd resonance, c) PVC, 1st resonance,

d) PVC, 2nd resonance.

proaches allows for obtaining physically meaningful results using fewer samples.
The disadvantages of the proposed methods can be seen to be the more time-
consuming sample preparation and the more complicated mathematical model.
Moreover, when the aim is to determine the mechanical parameters of the core
itself, an improvement of numerical properties does not occur (and they even
deteriorate).

Table 10. Statistics of measuring the rubber’s loss factor with regards to the used method –
mean value (standard deviation).

Loss factor, η [–]

Method
Steel PVC

1st resonance 2nd resonance 1st resonance 2nd resonance
O 0.89 (–) 1.03 (0.24) 0.28 (0.04) 0.45 (0.04)
MO 0.97 (0.31) 1.34 (0.39) 0.32 (0.11) 0.42 (0.02)
PM1 0.20 (0.01) 0.30 (0.02) 0.24 (0.01) 0.52 (0.13)
PM2 0.29 (0.23) 0.32 (0.02) 0.28 (0.07) 0.38 (0.02)



50 A. Dobrucki et al.

6. Conclusions

This paper presents and validates two new methods of determining the vis-
coelastic parameters of materials. The viscoelastic parameters were determined
by twice measuring the frequency response of a composite beam with different
layer thickness ratios. In this paper, the ratio of these thicknesses was equal
to 2.

The main advantage of the proposed methods is the easy fulfilment of the
conditions necessary for the existence of a sensible solution insensitive to mea-
surement errors, i.e. the condition given by Eq. (2.17), while for the methods
described in the ASTM standard, the non-fulfilment of the analogous condition
(2.16b) is relatively frequent. The PM1 method fulfilled the criterion in 100%
cases, while O and MO methods in total fulfilled the criterion only in 65% cases.
In the 35% cases, where the criterion was not met, the negative values of loss
factors and Young’s modulus have been obtained, which is obviously an mea-
surement error. Those results were rejected when calculating average values of
Young’s modulus and loss factors.

The disadvantages of the proposed methods can be seen to be the more time-
consuming sample preparation and the more complicated mathematical model.
Moreover, when the aim is to determine the mechanical parameters of the core
itself, an improvement of numerical properties does not occur (and they even
deteriorate). Also, the possible improvement of the method could be perform-
ing tests with many different thickness ratios and finding the optimal solution
using minimization algorithms. Taking into account the mention disadvantages,
a reasonable strategy to measure viscoelastic parameters is to carry out mea-
surements with standard methods, and then possibly to switch to new methods
if numerical problems occur.

If the aim is to determine the mechanical parameters of the core, more con-
sistent results can be obtained by using the direct method instead of the PM1
and PM2 methods, as was confirmed by both the simulations and measurements.

The simulations suggest that the PM2 method used for the 2nd resonance of
the sample may be the most accurate of all the tested methods.

It was noted that in the case of the PM1 and PM2 methods, the use of a core
with a relatively low Young’s modulus can underestimate determined Young’s
modulus and overestimate the sheath loss factor. All the tested methods require
very precise manufacturing of the test specimens. The specimens should be of
high quality, especially near the free edge of the beam. However, even then, the
tested methods have limited accuracy, which was shown by the FEM simulations.
When the errors related to the precision of the specimens are significant, only
an approximate determination of the viscoelastic parameters (with an accuracy
of about one order of magnitude) is possible.
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