Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Mapowanie Historycznego Sanktuarium Machupicchu przy użyciu bezzałogowego systemu powietrznego wyposażonego w LiDAR. Wyzwania i wstępne wyniki (cz. 1)
Języki publikacji
Abstrakty
Besides the well-recognized central part, the National Archaeological Park of Machupicchu encompasses approximately 60 lesser-known sites. Chachabamba and Inkaraqay are two examples. When using traditional field prospection on steep slopes covered by rainforest, it is challenging to detect traces of anthropogenic structures. A method that could help is the light detection and ranging (LiDAR) survey from aeroplanes or helicopters. The authors propose an alternative method using a self-developed LiDAR system mounted on a drone platform able to detect even relicts of walls less than one meter high. This approach’s main advantages are the speed and flexibility of prospection, highresolution 3D point clouds and the ability to penetrate the rainforest. The authors discuss methods of data accumulation, filtration, classification and different visualization algorithms pointing to challenges related to UAV LiDAR use. The second part of this article will present the preliminary results for the LiDAR survey over Chachabamba and Inkaraqay sites and the first validation of the results.
Obok dobrze zbadanej centralnej części, Narodowy Park Archeologiczny Machupicchu obejmuje także ponad 60 mniej znanych stanowisk. Przykładami są tutaj Chachabamba i Inkaraqay. Na stromych, porośniętych gęstym lasem deszczowym zboczach tradycyjne metody prospekcji terenowej nie gwarantują wykrycia wszystkich struktur o antropogenicznym charakterze, natomiast pomocne mogą być pomiary LiDAR (light detection and ranging) z pokładu samolotu lub helikoptera. Autorzy proponują alternatywną metodę z użyciem zamontowanego na dronie LiDAR-a, zdolnego do wykrywania reliktów murów o wysokości poniżej jednego metra. Główne zalety tej metody to łatwość i prędkość prospekcji, wysoka gęstość chmur punktów 3D oraz zdolność do penetracji pokrywy leśnej. Przedstawiono metodę zbierania danych, filtracji i klasyfikacji oraz algorytmy wizualizacji wyników. Jednocześnie wskazano wyzwania związane z użyciem systemów UAV LiDAR. Druga część artykułu zaprezentuje pierwsze wyniki pomiarów lidarowych w Chachabamba i Inkaraqay oraz ich wstępną ich ocenę.
Czasopismo
Rocznik
Tom
Strony
259--170
Opis fizyczny
Bibliogr. 34 poz., rys., fot.
Twórcy
autor
- Faculty of Architecture, Wroclaw University of Science and Technology
autor
- Center for Andean Studies, University of Warsaw
autor
- Faculty of Architecture, Wroclaw University of Science and Technology
autor
- National Archaeological Park of Machupicchu, Decentralized Directorate of Culture of Cusco, Ministry of Culture
autor
- Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences
Bibliografia
- Secondary sources / Opracowania
- 1. Astete Victoria Fernando, Ziółkowski Mariusz, Kościuk Jacek, On Inca astronomical instruments: the observatory at Inkaraqay - El Mirador (National Archeological Park of Machu Picchu, Peru), “Estudios Latinoamericanos” 016/17, vol. 36/37.
- 2. Astete Victoria Fernando, Ziółkowski Mariusz, Kościuk Jacek, Inca precise astronomical instruments: the observatory of Inkaraqay – El Mirador (National Archaeological Park of Machu Picchu, Peru, [in:] INSAP X – Oxford XI – SEAC 25 Conference: Road to the Stars, September 18–22, 2017, Santiago de Compostela, A.C. González García, P. Martin-Rodilla, J.A. Belmonte (eds.).
- 3. Bastante Abuhabda José Miguel, Fernández Flórez Alicia, Avances de las investigaciones interdisciplinarias en Machupicchu, “Revista Haucaypata. Investigaciones arqueológicas del Tahuantinsuyo” 2018, No. 13.
- 4. Bastante Abuhabda José Miguel, Sieczkowska Dominika, Deza Alexander, Investigaciones En El Monumento Arqueológico Chachabamba, [in:] Machupicchu Investigaciones Interdisciplinarias, eds. Bastante Abuhabda José Miguel, Astete Victoria Fernando, vol. II, Lima 2020.
- 5. Bäumker Manfred, Heimes Franz Josef, New calibration and computing method for direct georeferencing of imag and scanner data using the position and angular data of an hybrid inertial navigation system, “Integrated sensor orientation; test report and workshop proceedings” 2002, No. 43.
- 6. Challis Keith, Forlin Paolo, Kincey Mark, A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data, “Archaeological Prospection” 2011, vol. 18 (4).
- 7. Corns Anthony, Shaw Robert, High Resolution 3-Dimensional Documentation of Archaeological Monuments & Landscapes Using Airborne LiDAR, “Journal of Cultural Heritage” 2009, vol. 10, supl. 1.
- 8. Evans Damian H., Fletcher Roland J., Pottier Christophe, Chevance Jean-Baptiste, Soutif Dominique, Suy Tan Boun, Im Sokrithy, Ea Darith, Tin Tina, Kim Samnang, Cromarty Christopher, De Greef Stéphane, Hanus Kasper, Bâty Pierre, Kuszinger Robert, Shimoda Ichita, Boornazian Glenn, Uncovering Archaeological Landscapes at Angkor Using LIDAR, “Proceedings of the National Academy of Sciences” 2013, No. 110 (31).
- 9. Evans Damian H., Hanus Kasper, Fletcher Roland J., The Story Beneath the Canopy: an Airborne Lidar Survey Over Angkor, Phnom Kulen and Koh Ker, Northwestern Cambodia, [in:] Across Space and Time, Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology. Perth, 25–28 March 2013, ed. A. Traviglia, Amsterdam University Press 2015.
- 10. P. Fejos, Archeological Explorations in the Cordillera Vilcabamba, Southeastern Peru, Viking Fund publications in anthropology, New York 1944.
- 11. Fletcher Roland J., Hofer Nina, Mudbidri Miguel, Avances preliminares de la investigación con lidar en Machupicchu, [in:] Machupicchu. Investigaciones Interdisciplinarias, eds. Fernando Astete Victoria, Bastante Abuhabda José Miguel, vol. I, Cusco 2020.
- 12. Gallagher Julie M., Josephs Richard L., Using LiDAR to detect cultural resources in a forested environment: an example from Isle Royale National Park, Michigan, USA, “Archaeological Prospection” 2008, vol. 15, No. 3.
- 13. Gavazzi Adine, Tecnomorfología de la llaqta inka de Machupicchu. Materiales, métodos y resultados del levantamiento ar!uitectónico y paisajístico, [in:] Machupicchu. Investigaciones interdisciplinarias, eds. F. Astete Victoria, J. M. Bastante, vol. I, Cusco 2020.
- 14. Hebel Marcus, Stilla Uwe, Simultaneous calibration of ALS systems and alignment of multiview LiDAR scans of urban areas, “Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing” 2012, vol. 50, No. 6, p. 2364–2379.
- 15. Horn III Sherman W., Ford Anabel, Beyond the magic wand: methodological developments and results from integrated Lidar survey at the ancient Maya Center El Pilar, “Star: Science & Technology of Archaeological Research”, vol. 5, No. 2.
- 16. Huang Guoquan P., Mourikis Anastasios I., Roumeliotis Sergios I., Analysis and improvement of the consistency of extended Kalman filter based SLAM, 2008 IEEE International Conference on Robotics and Automation, 2008.
- 17. Jóźków Grzegorz, Toth Charles K., Grejner-Brzezinska Dorota, UAV topographic mapping with Velodyne lidar sensor, “ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences” 2016, vol. III, No. 1.
- 18. Magnoni Aline, Stanton Travis W., Barth Nicolas, Fernandez-Diaz Juan Carlos, Osorio León José Francisco, Pérez Ruíz Francisco, Wheeler Jessica A., Detection Thresholds of Archaeological Features in Airborne Lidar Data from Central Yucatán, “Advances in Archaeological Practice” 2016, vol. 4, No. 3.
- 19. Masini Nicola, Gizzi Fabrizio T., Biscione Marilisa, Fundone Vincenzo, Sedile Michele, Sileo Maria, Pecci Antonio, Lacovara Biagio, Lasaponara Rosa,
- 20. Medieval Archaeology Under the Canopy with LiDAR. The (Re)Discovery of a Medieval Fortified Settlement in Southern Italy, “Remote Sensing” 2018; vol. 10, No. 10.
- 21. Prufer Keith M., Thompson Amy E., Kennett Douglas J., Evaluating Airborne LiDAR for Detecting Settlements and Modified Landscapes in Disturbed Tropical Environments at Uxbenká, Belize, “Journal of Archaeological Science” 2015, No. 57.
- 22. Risbøl Ole, Bollandsås Ole Martin, Nesbakken Anneli, Ørka Hans Ole, Næsset Erik, Gobakken Terje, Interpreting Cultural Remains in Airborne Laser Scanning Generated Digital Terrain Models: Effects of Size and Shape on Detection Success Rates, “Journal of Archaeological Science” 2013, vol. 40, No. 12.
- 23. Rowe John Howland, Machu-Picchu a la luz en documentos del siglo XVI, “Histórica” 1990, No. 14(1).
- 24. Rusinkiewicz Szymon, Levoy Marc, Efficient Variants of the ICP Algorithm, [in:] Proceedings Third International Conference on 3-D Digital Imaging and Modeling., Quebec 2001.
- 25. Sieczkowska Dominika, Bastante Abuhabda José Miguel, Las Phaqchas de Chachabamba (Parque Arqueológico Nacional de Machupicchu, Perú), “Arqueologia Iberoamericana” 2021, No. 47.
- 26. Thompson Amy E., Detecting Classic Maya Settlements with Lidar-Derived Relief Visualisations, “Remote Sensing” 2020, No. 12 (17).
- 27. VanValkenburgh Parker, Cushman K.C., Castillo Butters Luis Jaime, Rojas Vega Carol, Roberts Carson B., Kepler Charles, Kellner James, Lasers Without Lost Cities: Using Drone Lidar to Capture Architectural Complexity at Kuelap, Amazonas, Peru, “Journal of Field Archaeology” 2020, No. 45(sup1.).
- 28. Ziółkowski Mariusz, Kościuk Jacek, Astronomical observations at Machu Picchu: facts, hypothesis and wishful thinking, [in:] Machu Picchu in context, eds. M. Ziółkowski, N. Massini, Springer, in print.
- 29. Ziółkowski Mariusz, Bastante Abuhadba José Miguel, Hogg Alan, Sieczkowska Dominika, Rakowsk Andrzej, Pawlyta Jacek, Manning W. Sturt, When did the Incas build Machu Picchu and its satellite sites? New Approaches Based On Radiocarbon Dating, “Radiocarbon” 2020.
- 30. Zhou Wei, Chen Fulong, Guo Huadong, Hu Mingyuan, Li Qi, Tang Panpan, Zheng Wenwu, Liu Jian’an, Luo Rupeng, Yan Kaikai, Li Ru, Shi Pilong, Nie Sheng, UAV Laser scanning technology: a potential cost-effective tool for micro-topography detection over wooded areas for archaeological prospection, “International Journal of Digital Earth” 2020, No. 13 (11).
- 31. Kokalj Žiga, Hesse Ralf, Airborne laser scanning raster data visualisation: A Guide to Good Practice, Ljubljana 2017.
- Electronic sources / Źródła elektroniczne
- 32. Terrascan User Guide 64-vit Terrascan Version 15.01.2021, Terrasolid Ltd, 2021, https://terrasolid.com/guides/tscan/index.html.
- 33. Using Airborne LIDAR in Archaeological Survey. The Light Fantastic, https://historicengland.org.uk/imagesbooks/publications/using-airborne-lidar-in-archaeological-survey/heag179-using-airborne-lidar-in-archaeological-survey/.
- 34. Velodyne, User’s manual and programming guide VLP-16 Velodyne LiDAR Puck, 63-9243 Rev A Aug 2015, https://velodynelidar.com/.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-854b93cd-8962-4f82-a6f7-b4bca449dc5f