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Introduction

The following study is a part of a larger project aiming 
to analyze the archaeological sites’ network within the 
Machu Picchu Archaeological Park. An additional goal 
was to define the extent of individual settlements and 
identify the types of buildings constituting their resi-
dential sectors. The Machupicchu National Archaeo-
logical Park, which covers 37,302 ha, was inscribed on 
the UNESCO World Heritage List in 1983. The name 
“Llaqta de Machupicchu” is the official term denoting 
the actual archaeological site, in which “Machupicchu” 
is written as one word.
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A network of roads connects the llaqta of  
Machupicchu with numerous (ca. 60) smaller archaeo-
logical sites (Fig. 1). Only general locations and bound-
aries of these sites have been observed, but the degree 
to which they have been scientifically explored varies 
from site to site. Therefore, it can still be expected that 
in the less accessible areas of the Park, there are other, 
hitherto unidentified traces of Inca activity. 

The project started in 2015, and its main objec-
tives were oriented towards studying the function of 
two satellite sites: Chachabamba and El Mirador de  
Inkaraqay (Fig. 1). From an academic point of view, both 
of these sites look promising for at least two reasons. 
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Firstly, they are in the Vilcanota Valley, in an area that was 
a political, administrative, and religious center1 associat-
ed with the Inka Pachacuti domain.2 Secondly, both sites 
present an interesting example of the different phases of 
Inca activity in this region. In light of recently compiled 
radiocarbon dates,3 the beginning of Chachabamba’s 
construction coincided with that of the llaqta of  
Machupicchu. In turn, many factors seem to indicate 
that El Mirador de Inkaraqay belongs to the final phase 
of the Incas’ activity in this area.4

The main problem related to such research is the 
complete recording of all of the area’s natural and an-
thropogenic features. Since the central parts of both 
sites were not covered with dense vegetation, they 
could have been easily documented by digital pho-
togrammetry (Fig. 2a) and terrestrial laser scanning 
(TLS) (Fig. 2b).5 However, these central zones’ study 
has not extended to the broader neighborhood due to 
the surrounding dense vegetation cover where some 
other pieces of evidence for Inca building activity are 
hidden. They often represent only relicts of walls that 
emerge from the ground by no more than two or three 
courses of stone blocks. Another factor are the tech-
nical and logistical problems of surveying very rugged 
areas covered by rainforest, which are difficult to ac-
cess using traditional terrestrial exploration techniques. 
This situation inspired the idea of using aerial prospec-
tion with a LiDAR system mounted on a UAV.

In archaeological survey, aerial LiDAR technology 

has proven helpful in quickly mapping and acquiring 
data over large areas. However, its main disadvantages 
are the equipment’s availability and the cost of bringing 
a specialized crew and equipment to the site.6 Never-
theless, the aerial LiDAR technique occupies a special 
place in remote sensing for archaeological purpos-
es, especially in densely forested areas.7 The most fa-
mous and spectacular applications relate to research in  
Mesoamerica.8 LiDAR survey also significantly im-
pacted the understanding of the Angkor site in north 
western Cambodia.9 Another example of research us-
ing a long-range LiDAR carried by helicopter are the 
recently published survey results of the Machupicchu  
National Archaeological Park.10

MATERIALS AND METHODS

Chachabamba archaeological site

Chachabamba (13°11’14.43” S; 72°30’34.26” W) is 
located, on the Vilcanota River’s left bank, 104 km 
along the railroad leading from Cusco in the direc-
tion of Machupicchu Pueblo at an average altitude of 
2,170 masl (Fig. 1). The first archaeological research 
at Chachabamba goes back to 1941, when Paul Fejos 
investigated the site.11 During this work, most of the 
covering vegetation was cleared away, so the archival 
photographs document the buildings’ conditions as the 
Inca had left them (Fig. 3). According to our present 
understanding, the site’s character was mainly cere-

Fig. 1. Archaeological sites and Inca roads within the northern part of the National Park – Historic Sanctuary of Machu Picchu; by J. Kłaput.
Ryc. 1. Stanowiska archeologiczne i drogi inkaskie w północnej części Parku Narodowego – Historyczne Sanktuarium Machu Picchu; 
oprac. J. Kłaput.
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monial, but some structures indicate also its residential 
and agrarian function.12

Further archaeological research at Chachabamba 
took place between 1996 and 1997. Current archaeo-
logical investigations started in 2016 and continue to 
this day within the research program of the Direc-
ción Desconcentrada de Cultura Cusco, supported 
by the Center for Andean Studies of the University of  
Warsaw in Cusco (CEAC UV), with the help from the 
staff and equipment of the Laboratory of 3D Scanning 
and Modelling (LabScan3D) at the Wrocław Universi-
ty of Science and Technology.

Four different sectors can be distinguished within 
Chachabamba (Fig. 4). In the most thoroughly exam-
ined Sector A (ca. 3,500 m2), the presence of a carved 

sacred rock and a system of fourteen fountains used for 
ablutions confirm its ritual function.13 However, cov-
ered with very dense vegetation Sector B (ca. 8,500 m2) 
of a predominately residential function (Fig. 5) was not 
examined in detail.14 Even denser vegetation covers 
Sectors C (ca. 6,000 m2) and D (ca. 9,000 m2), where 
one can expect large terraces and some additional 
structures.

El Mirador de Inkaraqay and its relation to the 
Inkaraqay archaeological site

El Mirador de Inkaraqay (13°08’57.0” S; 72°32’55.0” 
W) is a small architectural structure situated on the 
northern slopes of Huayna Picchu on the left bank of 

Fig. 2. Terrestrial survey. a – orthoimage of the Chachabamba archaeological site’s central part; by B. Ćmielewski, b – El Mirador de 
Inkaraqay site on TLS survey; by J. Kościuk.
Ryc. 2. Inwentaryzacja terenu: a – ortofotomapa centralnej części stanowiska archeologicznego Chachabamba; oprac. B. Ćmielewski, 
b – stanowisko El Mirador de Inkaraqay na inwentaryzacji TLS; oprac. J. Kościuk.

Fig. 3. Chachabamba during P. Fejos’ expedition in 1941; courtesy of the Metropolitan Museum of Art, New York, Department of the 
Michael C. Rockefeller Wing.
Ryc. 3. Chachabamba w trakcie ekspedycji P. Fejosa; dzięki uprzejmości Metropolitalnego Muzeum Sztuki w Nowym Jorku, Wydział 
Skrzydła Michaela C. Rockefellera.
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Fig. 4. Plan of the Chachabamba archaeological site, prepared by the Machupicchu National Archaeological Park’s architects surveyors; 
courtesy of the DDC-Cusco.
Ryc. 4. Plan stanowiska archeologicznego Chachabamba, przygotowany przez architektów i geodetów Parku Archeologicznego  
Machupicchu; dzięki uprzejmości DDC-Cusco.

Fig. 5. Plan of the Inca road between Huayna Picchu and Inkaraqay; prepared by the Machupicchu National Archaeological Park’s survey-
ors, courtesy DDC-Cusco, Google Earth image used for the background, edited and adjusted by J. Kościuk; A – Inca walls and buildings; 
B – terraces; C – Inca path; D – rock boulders; E – contour lines.
Ryc. 5. Plan drogi inkaskiej między Huayna Picchu i Inkaraqay; opracowany przez architektów i geodetów Parku Archeologicznego Ma-
chupicchu, dzięki uprzejmości DDC-Dusco, obraz z Google Earth użyty jako tło, edycja i dostosowanie J. Kościuk: A – inkaskie mury i 
budynki; B – tarasy, C – inkaska ścieżka; D – głazy kamienne; E – poziomice.
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the Vilcanota River at an altitude of 2,012 masl. The 
site is located in very rugged terrain covered with dense 
rainforest. This area of the Park is outside any tour-
ist routes and is visited only by the Park specialists for 
maintenance and monitoring works.

The former Director of the Park, Fernando Astete, 
discovered the El Mirador site in 1982, but the first 
limited-scale archaeological fieldwork was only car-
ried out in 2012. Its essential result was recording the 
Inca road running from the Templo de la Luna (the last 
point on the tourist circuit) to the Inkaraqay archaeo-
logical site (Fig. 5). Some sites have also been surveyed 
and investigated along this road, but most of the area’s 
architectural remains have been left unrecorded. This 
is mainly due to difficulty in the terrestrial prospection 
of such rugged and densely covered terrain.

Between 2013 and 2019, the Peruvian-Polish re-
search team conducted more intensive work at El  
Mirador de Inkaraqay and proved that the site func-
tioned as an astronomical observatory.15 However, the 
relationship between El Mirador de Inkaraqay and the 
located to the west archaeological site of Inkaraqay re-
mained unknown. The terrain between these sites is vir-
tually unexplored. This situation motivated the authors 
of this study to use a UAV-mounted LiDAR to survey 
the area in search for possible vestiges of pre-Hispanic 
constructions concealed by the rainforest—an approach 
similar to that recently published research on Kuelap in 
the Peruvian Chachapoya department.16

Survey techniques

In the LiDAR survey, the topography of the terrain 
and the characteristics of the anthropogenic anoma-
lies being searched for significantly impact the identi-

fication and interpretation process.17 Also, processing 
this kind of data, particularly adjusting and adapt-
ing vegetation filtering algorithms, is challenging.18  
Filtering out vegetation cover, which results in a bare-
ground 3D point cloud, is based on the LiDAR devic-
es’ feature to record several (at least two) returns from 
the probing signal (Fig. 6). 

The resulting data quality greatly depends on the 
LiDAR system’s ability to penetrate the vegetation 
cover. This, in turn, is influenced by the laser beam 
footprint size (as a resultant of LiDAR technical param-
eters and flight altitude) and the characteristic of the 
terrain surveyed—the density of the vegetation cover, 
the ground’s reflectance and its directivity of the reflec-
tion. Since only some of the impulses reach the ground 
itself; it results in a significant reduction in the ground 
surface sampling density: typically, from only a few to a 
dozen or so reflections per square meter.

The principle that the sampling resolution should 
be at least twice the size of the anomaly being searched 
for results in significant requirements for the mini-
mum sampling resolution useful in the given condi-
tions. In cases where large objects are being detected 
(moats, barrows, or extensive embankments), even 
one to two points per square meter may be sufficient. 
The situation changes when one searches for the rel-
ics of buildings where wall relicts are only a few me-
ters long and hardly broader than half a meter. Even 
a dozen or so of ground-points per square meter may 
turn out to be insufficient. Another aspect to consider 
is the cost and logistics of the LiDAR survey using 
airplanes or helicopters. It is profitable only for large-
scale studies covering tens, if not hundreds of square 
kilometers, but unfeasible for studies spanning only 
a few square kilometers of the area remote from any 
airfields and LiDAR surveying companies. In such 
conditions, the UAV based LiDAR survey seems more 
rational.

UAV LiDAR system used in the study

With its lifting capacity of 9.6 kg, the octocopter assem-
bled at LabScan3D from commercially available parts 
served as the platform for the entire system. The sens-
ing system was equipped with a Velodyne VLP-16 la-
ser scanner combined with a dual-frequency NovAtel 
OEM615 GNSS receiver with a survey-grade antenna 
and an Sensonor IMU STIM300. The technical speci-
fications are summarized in Table 1.

All the sensors, together with an AAEON micro-
computer for collecting and storing the data, were as-
sembled in an aluminum box fixed by quick-release 
coupling plate (Fig. 7). The entire system (UAV and 
LiDAR) was powered by two six-cell Li-Ion batteries 
with a capacity of 12.5 Ah each, enabling the drone to 
fly at an altitude of ca. 2,500 masl for around 17 min-
utes, covering 200,000 to 250,000 m2 of the terrain on 
average. Because the system had only one survey-grade 
GNSS antenna, a kinematic alignment was necessary 

Fig. 6. Dual return single principle of Velodyne VLP-16 sensor; by 
B. Ćmielewski.
Ryc. 6. Zasada podwójnego pomiaru czujnika Velodyne VLP-16; 
oprac. B. Ćmielewski.
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to obtain the correct azimuth. Additional equipment 
included a ground station for differential trajectory 
processing with a dual-frequency NovAtel OEM615 
GNSS receiver and a GNSS antenna. The total cost of 
all components did not exceed 20,000 US$, which is 
about a quarter of the cost of commercial off-the-shelf 
LiDAR systems intended for UAVs.

Four flights, all in the visual line of sight (VLOS) 
mode, were accomplished for each of the two sites. 

A critical factor was the sky’s visibility, which was limit-
ed by the surrounding steep hills since the site is locat-
ed at the bottom of the Vilcanota Valley. For this reason, 
a flight altitude for the Chachabamba site was set to 
60 m above ground level, and an optimal time window 
for the survey was selected to ensure the largest num-
ber of satellites visible.

For the Inkaraqay site and the surrounding area, it 
was impossible to set up a trajectory line at one alti-
tude. Steep slopes, limited choice of takeoff and land-
ing sites, and varying height of the vegetation forced 
flight in manual mode following the site topography 
with 20–40 m separation from upper tree branches.

Data acquisition and processing

The data from sensors were collected in the internal 
memory of the attached microcomputer. The precise 
time pulse from the inertial measurement unit (IMU) 
with NMEA GPRMC header was fed into the scan-
ner sensor allowing time stamps for each information 
packet. Parallelly, the raw data from the IMU and 
GNSS sensor were also stored in a binary file. Using 
sensor fusion in Extended Kalman Filter19 implement-
ed in Novatel Inertial Explorer commercial software, 
the precise trajectory was calculated from this data. The 
georeferencing of LiDAR 3D point cloud has a typi-
cal workflow that requires three sets of data: trajectory, 
laser scanner measurements, and calibration parame-
ters (translation and rotation values between laser sen-
sor and IMU unit).20 Data acquisition and processing 
workflow are illustrated in Fig. 8.

This ensured the transformation of the local scanner 
coordinate system (s-frame) into the Earth-Centered/
Earth-Fixed (ECEF) coordinate system (e-frame), and 
after that, transformation into an appropriate geodetic 
projection.21 The scanner measures the range and an-
gles in time (t), from which the Cartesian coordinates 
of s-frames are calculated. Before the transformation 
to ECEF, the scanner calibration parameters must be 
added. To obtain calibration parameters, we used the 
Iterative Closest Point (ICP) algorithm.22

Laser sensor – Velodyne VLP-16
number of diodes 16

horizontal field of view (as mounted on the drone) 30° (+15° to -15°)

measurement range up to 100 m

measurement accuracy ± 0.03 m

number of returns 2

GNSS sensor Novatel OEM615
horizontal GNSS/IMU accuracy 0.010 m

vertical GNSS/IMU accuracy 0.020 m

IMU sensor - Sensonor STIM300
IMU attitude for roll and pitch 0.006°

IMU attitude for yaw 0.019°

Fig. 7. The LiDAR system assembled at LabScan3D and used in 
the study; photo by J. Kościuk.
Ryc. 7. System LiDAR złożony w LabScan3D i wykorzystany 
w badaniu; fot. J. Kościuk.

Table 1. The technical specifications of the components
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The transformation from s-frame to e-frame in-
volves several steps. The trajectory has to be calculated 
from collected GNSS and IMU data using a tightly- 
coupled EKF (Extended Kalman Filter) with a known 
offset between the IMU and GNSS antenna. This step 
was done in Novatel Inertial Explorer commercial soft-
ware. The results of the trajectory reconstruction were 
IMU (b-frame origin) positions in e-frame xb(t) and 
IMU attitudes (angles) in n-frame. These served as in-
put data to calculate the rotation matrix Rb(t). Next, the 
calculated coordinates of the points given in s-frame x(t) 
were transformed into e-frame according to the follow-
ing direct georeferencing equation [1].23 

x e(t) = x e
b (t) + R e

n(t) × R n
b(t) × (x b

s + Rb
s + xs(t))   [1]

where:
xs(t) – the Cartesian coordinates of a point in s-frame;
x b

s – the position of the s-frame origin in the IMU coor-
dinate system (b-frame);

Rb
s = Rb

s (ω, φ, κ) – the rotation matrix from s-frame to 
b-frame;

R n
b(t) = R n

b(r(t), p(t), y(t)) – the rotation matrix from 
b-frame to n-frame;

Re
n(t) = R e

n((λ(t), φ (t)) – the rotation matrix from 
the navigational topocentric coordinate system 
(n-frame) to e-frame;

x e
b (t) – the position of b-frame origin in e-frame;

x e(t) – the point coordinates in e-frame.
In the next phase of data fusion, the point cloud in 

the e-frame was transformed into a national coordinate 

Fig. 8. Main steps of data acquisition and processing; by B. Ćmielewski.
Ryc. 8. Główne kroki pozyskiwania i przetwarzania danych; oprac. B. Ćmielewski.

Fig. 9. Impact of calibration parameters on the computed cloud; by B. Ćmielewski; a – only rough calibration and offsets; b – rough and 
precise calibration parameters applied.
Ryc. 9. Wpływ kalibracji parametrów na obliczoną chmurę punktów: a – jedynie pobieżna kalibracja i offsetowanie; b – zastosowana 
pobieżna i dokładna kalibracja parametrów; oprac. B. Ćmielewski.
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system by applying an appropriate projection (UTM 
18S). The height was also converted from ellipsoidal 
to orthometric heights by applying the separation value 
between ellipsoid and geoid from the global geopoten-
tial model (EGM2008).

Since the entire procedure involved numerous steps, 
dedicated software was developed at LabScan3D facil-
itating all data processing and making the entire pro-
cess more user-friendly. Firstly, the dataset with meas-
ured calibration parameters was processed—offsets and 
rough rotation between IMU and laser scanner. Later, 
after using the ICP algorithm, the precise calibration was 
added. This significantly improved the results (Fig. 9). 
The final product was a 3D point cloud in *.las format.

The accuracy of the obtained 3D point cloud (dif-
ferences in a mismatch from estimated maximal er-
ror) was less than 8 cm. The resulting file constituted 
the input data for the last step of processing involving 
noise filtering and classification. The Velodyne VLP-16 
sensor records separate returns only when the distance 
between the two objects reflecting laser pulses is one 
meter or more.24 This means that some of the recorded 
3D points might be lacking correct spatial information. 
Such the noise points were filtered out using TerraScan 
software. The same software was used to classify the 
3D point cloud—filtering out all the vegetation cover 
and leaving only the bare-ground 3D points. The so-
called “ground routine,” which builds a surface model 
from the initial ground points, has been used.25 Since in 
rainforest conditions, most wall relics are covered with 
a dense layer of lianas and lichens, an additional class 
to the filtration process has been introduced—“the 
ground class + 0.5 m.” To assess our LiDAR system’s 
effectiveness, the resulting data density was compared 
with chosen data from a helicopter flights equipped 
with a long-range LiDARs (Table 2).

Data post-processing and visualization

Visualization techniques for digital elevation models 
(DEM) are often used to analyze and interpret ar-
chaeological relics hidden under a vegetation canopy.28 
Therefore, the *.las data classified and stripped of veg-
etation were imported into the ArcGIS 10.5 software 
package to create a GeoTIFF DEM file. A standalone 
tool, Relief Visualisation Toolbox v.2.1 (RVT), further 
processed the DEM files.29 Besides the generic hill-
shade method, four other visualizations modes also 
proved to help highlight and emphasize hidden relics:
—	 ultidirectional hillshade,
—	 local relief modelling,
—	 openness (positive and/or negative), 
—	 sky-view factor.

Depending on the features of particular relics it was 
found useful to apply different visualization methods 
(Fig. 10). The preliminary results were analyzed by a team 
of archaeologists and data acquisition specialists, who de-
termined which particular anomaly could be associated 
with anthropogenic traces in the surveyed sectors.

Fig. 10. Comparison of different visualization methods – the 
Chachabamba archaeological site example; a – sky-view fac-
tor; b – openness positive; c – multidirectional hill shading; by 
B. Ćmielewski.
Ryc. 10. Porównanie różnych metod wizualizacji – przykład stano-
wiska archeologicznego Chachabamba: a – współczynnik widoku 
nieba; b – pozytyw otwartości; c – wielokierunkowe cieniowanie 
wzgórz; oprac. B. Ćmielewski.
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Table 2 Comparison of LiDAR datasets return signals

Average 3D point cloud density

Data all returns  
[pts/m2]

ground class 
only [pts/m2]

ground class + 0.5 m
[pts/m2]

Inkaraqay (LiDAR UAV) ca. 513 10.6 25.3

Chachabamba (LiDAR UAV) ca. 219 13.2 72.2

Sample data received from Machu Picchu National Archaeologi-
cal Park authorities* (long range LiDAR on a helicopter)

- 1.3÷1.4 -

Uxbenká (Belize)
(long range LiDAR on the crew-maned platform)26

20.1 2.7 -

Typical LiDAR datasets ground return signals in the Maya regions 
of Belize (LiDAR on the crew-maned platform)27

- 1.1÷5.3 -

* Courtesy of DDC-Cusco.
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Abstract

Besides the well-recognized central part, the National 
Archaeological Park of Machupicchu encompasses ap-
proximately 60 lesser-known sites. Chachabamba and 
Inkaraqay are two examples. When using traditional 
field prospection on steep slopes covered by rainfor-
est, it is challenging to detect traces of anthropogenic 
structures. A method that could help is the light detec-
tion and ranging (LiDAR) survey from aeroplanes or 
helicopters. The authors propose an alternative meth-
od using a self-developed LiDAR system mounted on 
a drone platform able to detect even relicts of walls less 
than one meter high. This approach’s main advantag-
es are the speed and flexibility of prospection, high- 
resolution 3D point clouds and the ability to penetrate 
the rainforest. The authors discuss methods of data ac-
cumulation, filtration, classification and different vis-
ualization algorithms pointing to challenges related to 
UAV LiDAR use. The second part of this article will 
present the preliminary results for the LiDAR survey 
over Chachabamba and Inkaraqay sites and the first 
validation of the results.

Streszczenie

Obok dobrze zbadanej centralnej części, Narodowy 
Park Archeologiczny Machupicchu obejmuje także po-
nad 60 mniej znanych stanowisk. Przykładami są tutaj 
Chachabamba i Inkaraqay. Na stromych, porośniętych 
gęstym lasem deszczowym zboczach tradycyjne me-
tody prospekcji terenowej nie gwarantują wykrycia 
wszystkich struktur o antropogenicznym charakterze, 
natomiast pomocne mogą być pomiary LiDAR (light 
detection and ranging) z pokładu samolotu lub helikopte-
ra. Autorzy proponują alternatywną metodę z użyciem 
zamontowanego na dronie LiDAR-a, zdolnego do wy-
krywania reliktów murów o wysokości poniżej jednego 
metra. Główne zalety tej metody to łatwość i prędkość 
prospekcji, wysoka gęstość chmur punktów 3D oraz 
zdolność do penetracji pokrywy leśnej. Przedstawiono 
metodę zbierania danych, filtracji i klasyfikacji oraz al-
gorytmy wizualizacji wyników. Jednocześnie wskazano 
wyzwania związane z użyciem systemów UAV LiDAR. 
Druga część artykułu zaprezentuje pierwsze wyniki 
pomiarów lidarowych w Chachabamba i Inkaraqay 
oraz ich wstępną ich ocenę.


