PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of lead(II) ions by an adsorption process with the use of an advanced SiO2/lignin biosorbent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We demonstrate here that lignin can be successfully combined with silica to create a multifunctional material with considerable sorption capabilities. Experiments were carried out in which a silica/lignin hybrid was used for the removal of lead(II) ions from water solutions. Adsorption kinetics were also determined and preliminary regeneration tests were performed. The effectiveness of the adsorption process depends on the following parameters: contact time of adsorbent and adsorbate (equilibrium times: 5 min for concentration 25 mg/L, 10 min for 50 and 75 mg/L, 60 min for 100 mg/L), pH (optimal pH = 5) and adsorbent mass. The kinetics of the adsorption of lead(II) ions on the SiO2/lignin biosorbent are best described by a pseudo-second-order model. Adsorption isotherms of lead(II) ions were also determined. The experimental data were found to be in agreement with the Langmuir model, and the maximal sorption capacity of the adsorbent with respect to lead(II) was 89.02 mg/g.
Rocznik
Strony
48--53
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL 60-965 Poznan, Poland
autor
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL 60-965 Poznan, Poland
Bibliografia
  • 1. Patrick, L. (2006). Lead toxicity, review of the literature. Part 1: Exposure, evaluation, and treatment. Altern. Med. Rev. 11(1), 2-21.
  • 2. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscipl. Toxicol. 7(2), 60-72. DOI: 10.2478/intox-2014-0009.
  • 3. Guo, X., Zhang, S. & Shan, X. (2008). Adsorption of metal ions on lignin. J. Hazard. Mater. 151(1), 134-142. DOI: 10.1016/j.jhazmat.2007.05.065.
  • 4. Ciesielczyk, F., Bartczak, P., Wieszczycka, K., Siwińska-Stefańska, K., Nowacka, M. & Jesionowski, T. (2013). Adsorption of Ni(II) from model solutions using co-precipitated inorganic oxides. Adsorption 19(2), 423-434. DOI: 10.1007/ s10450-012-9464-5.
  • 5. Huang, G., Wanga, D., Mab, S., Chen, J., Jiang, L. & Wang, P. (2015). A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). J. Colloid Interface Sci. 445, 294-302. DOI: 10.1016/j. jcis.2014.12.099.
  • 6. Miretzky, P., Munoz, C. & Carrillo-Chavez, A. (2007). A sandy loam soil as a natural control for Pb contamination. Environ. Chem. Lett. 5(3), 131-136. DOI: 10.1007/s10311-007-0093-2. [
  • 7. Safari Sinegani, A.A. & Araki, H.M. (2010). The effects of soil properties and temperature on the adsorption isotherms of lead on some temperate and semiarid surface soils of Iran. Environ. Chem. Lett. 8(2), 129-137. DOI: 10.1007/s10311-009-0199-9.
  • 8. Pei-Sin, K., Siew-Ling, L., Sie-Tiong, H., Yung-Tse, H. & Siew-Teng, O. (2014). Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ. Chem. Lett. 12(1), 15-25. DOI: 10.1007/s10311-013-0427-1.
  • 9. Inagaki, S., Caretta, T., Alfaya, R.V. & Alfaya, A. (2013). Mexerica mandarin (Citrus nobilis) peel as a new biosorbent to remove Cu(II), Cd(II), and Pb(II) from industrial effluent. Desalin. Water Treat. 51(28-30), 5537-5546. DOI: 10.1080/19443994.2012.759156.
  • 10. Şahin, İ., Keskin, S.Y. & Keskin, C.S. (2013). Biosorption of cadmium, manganese, nickel, lead, and zinc ions by Aspergillus tamari. Desalin. Water Treat. 51(22-24), 4524-4529. DOI: 10.1080/19443994.2012.752332.
  • 11. Meena, A.K., Kadirvelu, K., Mishraa, G.K., Rajagopal, C. & Nagar, P.N. (2008). Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J. Hazard. Mater. 150(3), 619-625. DOI: 10.1016/j.jhazmat.2007.05.011.
  • 12. Thakur, V.K. & Thakur, M.K. (2015). Recent advances in green hydrogels from lignin: A review. Int. J. Biol. Macromol. 72, 834-847. DOI: 10.1016/j.ijbiomac.2014.09.044.
  • 13. Thakur, V.K., Thakur, M.K. & Gupta, R.K. (2014). Review: Raw natural fiber-based polymer composites. Int. J. Polym. Anal. Character. 19(3), 256-271. DOI: 10.1080/1023666X.2014.880016.
  • 14. Thakur, V.K., Thakur, M.K., Raghavan, P. & Kessler M.R. (2014). Progress in green polymer composites from lignin for multifunctional applications: A review. ACS Sustainable Chem. Eng. 2(5), 1072-1092. DOI: 10.1021/sc500087z.
  • 15. Betancur, M., Bonelli, P.R., Velásquez, J.A. & Cukierman, A.L. (2009). Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater: Effect of demineralization. Bioresour. Technol. 100(3), 1130-1137. DOI: 10.1016/j.biortech.2008.08.023.
  • 16. Bulgariu, L., Bulgariu, D., Malutan, T. & Macoveanu, M. (2009). Adsorption of lead(II) ions from aqueous solution onto lignin. Adsorp. Sci. Technol. 27(4), 435-445. DOI: 10.1260/026361709790252623.
  • 17. Guo, X., Zhang, S. & Shan, X. (2008). Adsorption of metal ions on lignin. J. Hazard. Mater. 151(1), 134-142. DOI: 10.1016/j.jhazmat.2007.05.065.
  • 18. Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Colloid Interface Colloid Interface Sci. 166(1-2), 36-59. DOI: 10.1016/j.cis.2011.04.005.
  • 19. Lei, Y. & Huizhen, Y. (2013). Modifi cation of reed alkali lignin to adsorption of heavy metals. Adv. Mater. Res. 622(1), 1646-1650. DOI: 10.4028/www.scientifi c.net/AMR.622-623.1646.
  • 20. Ge, Y., Li, Z., Kong, Y., Song, Q. & Wang, K. (2014). Heavy metal ions retention by bi-functionalized lignin: Synthesis, applications, and adsorption mechanisms. J. Ind. Eng. Chem. 20(6), 4429-4436. DOI: 10.1016/j.jiec.2014.02.011.
  • 21. Klapiszewski, Ł., Nowacka, M., Milczarek, G. & Jesionowski, T. (2013). Physicochemical and electrokinetic properties of silica/lignin biocomposites. Carbohydr. Polym. 94(1), 345-355. DOI: 10.1016/j.carbpol.2013.01.058.
  • 22. Jesionowski, T., Klapiszewski, Ł. & Milczarek, G. (2014). Kraft lignin and silica as precursors of advanced composite materials and electroactive blends. J. Mater. Sci. 49(3), 1376-1385. DOI: 10.1007/s10853-013-7822-7.
  • 23. Klapiszewski, Ł., Bartczak, P., Wysokowski, M., Jankowska, M., Kabat, K. & Jesionowski, T. (2015). Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chem. Eng. J. 260, 684-693. DOI: 10.1016/j.cej.2014.09.054.
  • 24. Jesionowski, T., Klapiszewski, Ł. & Milczarek, G. (2014). Structural and electrochemical properties of multifunctional silica/lignin materials. Mater. Chem. Phys. 147(3), 1049-1057. DOI: 10.1016/j.matchemphys.2014.06.058.
  • 25. Jesionowski, T. & Krysztafkiewicz, A. (2000). Comparison of the techniques used to modify amorphous hydrated silicas. J. Non-Cryst. Sol. 277(1), 45-57. DOI: 10.1016/S0022-3093(00)00299-4.
  • 26. Jesionowski, T., Ciesielczyk, F. & Krysztafkiewicz, A. (2010). Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater. Chem. Phys. 119(1-2), 65-74. DOI: 10.1016/j. matchemphys.2009.07.034.
  • 27. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga. Svenska. Vetensk. Handl. 24, 1-39.
  • 28. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451-465. DOI: 10.1016/S0032-9592(98)00112-5.
  • 29. Freundlich, H.M.F. (1906). Over the adsorption in solution. J. Phys. Chem. 57(A), 385-470.
  • 30. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361-1403.
  • 31. Kumari, M., Pittman, Jr C.U. & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J. Colloid Interface Sci. 442, 120-132. DOI: 10.1016/j.jcis.2014.09.012.
  • 32. Ma, S., Chen, Q., Li, H., Wang, P., Islam, S.M., Gu, Q., Yanga, X. & Kanatzidis, M.G. (2014). Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. J. Mater. Chem. A 2(26), 10280-10289. DOI: 10.1039/C4TA01203H.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-854aab64-f03f-482f-bbff-ed2e7c2ca361
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.