PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MHD Supported Electroreduction of Formate Nickel Complexes with Simultaneous Incorporation of TiO2 Particles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work concerns analysis of the possibilities of synthesis of Ni-TiO2 composite coatings from electrolytes containing formate nickel complexes. A magnetic field was applied as an additional factor enabling modification of properties of the synthesized coatings through its influence on electrode processes. The presented data describes the effect of electrode potential, TiO2 concentration in the electrolyte as well as the value of the magnetic field induction vector on the deposition rate, composition, current efficiency, structure, surface states and morphology of synthesized coatings. The studies were preceded by thermodynamic analysis of the electrolyte. The obtained results indicated possibilities of synthesis of composites containing up to 0.97wt.% of TiO2. Depending on applied electrolysis conditions current efficiency amounted to from 61.2 to 75.1%.
Twórcy
autor
  • AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] S. T. Aruna, M. Muniprakash, V. K.W. Grips, J. Appl. Electrochem. 43, 805-815 (2013).
  • [2] T. Arunarkavalli, G. U. Kulkarni, G. Sankar, C.N.R. Rao, Catal. Lett. 17, 29-37 (1993).
  • [3] W. T. Chen, A. Chan, D. Sun-Waterhouse, J. Catal. 326, 43-53 (2015).
  • [4] N. Shimoda, D. Shoji, K. Tani K, Appl. Catal. B-Environ. 174, 486-495 (2015).
  • [5] X. C. Meng, H. Y. Cheng, S. Fujita, J. Catal. 269, 131-139 (2010).
  • [6] R. M. Mohamed, E. S. Aazam, Chinese J. Catal. 33, 247-253 (2012).
  • [7] W. J. Ong, M. M. Gui, S. P. Chai, A. R. Mohamed, RSC Adv. 3, 4505-4509 (2013).
  • [8] M. Zhou, N. R. De Tacconi, K. Rajeshwar, J. Electroanal. Chem. 421, 111-120 (1997).
  • [9] N. R. De Tacconi, M. Mrkic, K. Rajeshwar, Langmuir 16, 8426-8431 (2000).
  • [10] S. Spanou, A. I. Kontos, A. Siokou, A. G. Kontos, N. Vaenas, P. Falaras, E. A. Pavlatou, Electrochim. Acta 105, 324-332 (2013).
  • [11] S. Mohajeri, A. Dolati, M. Ghorbani, Surf. Coat. Tech. 262, 173-183 (2015).
  • [12] D. Thiemig, A. Bund, Surf. Coat. Tech. 202, 2976-2984 (2008).
  • [13] V. Stanković, M. Gojo, V. Grekulovic, N. Pajkić, T. Cigula, J. Min. Metall. Sect. B Metall. 53 (3) 341-348 (2017).
  • [14] P. Zabiński, K. Mech, R. Kowalik, Arch. Metall. Mater. 57, 127-133 (2012).
  • [15] P. Zabiński, K. Mech, R. Kowalik, Electrochim. Acta 104, 542-548 (2013).
  • [16] R. Kowalik, K. Mech, D. Kutyla, T. Tokarski, P. Zabinski, Magnetohydrodynamics 51, 345-351 (2015).
  • [17] H. Kermoune, A. Levesque, J. Douglad, R. Rehamnia, J. P. Chopart, Ionics 23, 3565-3570 (2017).
  • [18] D. Li, Y. Gao, Q. Wang, G. Li, Ch. Wu, A. L. Daltin, J. P. Chopart, J. Electrochem. Soc. 163, D836-D841 (2016).
  • [19] Q. Feng, T. Li, Z. Zhang, J. Zhang, M. Liu, J. Jin, Surf. Coat. Tech. 201 (14), 6247-6252 (2007).
  • [20] J. A. Koza, M. Uhlemann, A. Gebert, L. Schultz, Electrochem. Comm. 10 (9), 1330-1333 (2008).
  • [21] A. Krause, C. Hamann, M. Uhlemann, A. Gebert, L. Schultz, J. Magn. Magn. Mat. 290-291, 261-264 (2005).
  • [22] M. Peng, Y. Zhong, T. Zheng, L. Fan, J. Zhou, W. Ren, Z. Ren, J. Mater. Sci. Technol. 34 (12), 2492-2497 (2018).
  • [23] Q. Long, Y. B. Zhong, H. Wang, T. X. Zheng, J. F. Zhou, Z. M. Ren, Int. J. Min. Met. Mater. 21 (12), 1175-1186 (2014).
  • [24] Z.H.I. Sun, X. Zhang, M. Guo, L. Pandelaers, J. Vleugels, O. Van der Biest, K. Van Reusel, B. Blanpain, J. Colloid. Inter. Sci. 375 (1), 203-212 (2012).
  • [25] Z. Sun, M. Guo, J. Vleugels, B. Blanpain, O. Van der Biest, J. Appl. Phys. 109 (8), 084917 (2011).
  • [26] A. E. Martel, R. M. Smith, Critical Stability Constants: First Supplement, Springer (1982).
  • [27] A. E. Martell, R. M. Smith, Critical stability constants. Plenum Press, New York (1976).
  • [28] B. Beverskog, I. Puigdomenech, Corr. Sci. 39, 969-980 (1997).
  • [29] N. V. Plyasunova, Y. Zhang, M. Muhammed, Hydrometallurgy 48, 43-63 (1998).
  • [30] T. Berzins, P. Delahay. J. Am. Chem. Soc. 75, 555-559 (1953).
  • [31] C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, NIST Standard Reference Database 20, Version 3.4.
  • [32] K. Mech, Metall. Mater. Trans. A, 50 (9), 4275-4287 (2019).
  • [33] K. Mech, Mater. Design 182, 108055 (2019).
Uwagi
EN
1. This work was supported by Polish Ministry of Science and Higher Education under grant IP2015/049974 as well as by Polish National Center of Science under grant 2017/26/D/ST8/00508. K. Mech would like to thank P. Zabinski, M. Marzec and M. Watroba for enabling WD-XRF, XPS and EDS analyses, respectively.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85477fb7-4c65-4feb-a4ad-a96c3dfda868
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.