Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Określenie wpływu temperatury formowania na właściwości włóknin spun-bonded wytworzonych z PBSA
Języki publikacji
Abstrakty
This article presents the influence of the formation temperature of nonwovens from biodegradable aliphatic polyesters (trade name Bionolle) on their structure and mechanical properties. Nonwovens were produced by spun-bonded technique at a laboratory installation at IBWCh, changing one of the process parameters i.e. the temperature of the polymer. Basic parameters of the polymer were evaluated in order to determine the spun-bonded process condition. Phase transition temperature - glass transition temperature (Tg), -melting point (Tm) and mass flow index (MFI)were assessed. The effect of manufacturing conditions on the properties of the nonwovens obtained was identified on the basis of the analysis of their mechanical parameters, the sorption rate, crystallinity and compost biodegradation rate. It has been shown that 238 °C is the best formation temperature to produce nonwovens with good mechanical properties and at the same time accessible biodegrability.
W artykule przedstawiono badania wpływu temperatury formowania na właściwości mechaniczne i strukturę włóknin otrzymywanych z biodegradowalnego poliestru alifatycznego (nazwa handlowa Bionolle). Włókniny wyprodukowano metodą spun-bonded na instalacji laboratoryjnej IBWCh. Ocenione zostały podstawowe parametry polimeru, które służyły do określenia warunków formowania włóknin, są to między innymi temperatury przemian fazowych: temperatura zeszklenia (Tg), temperatura topnienia (Tm) i masowy indeks płynięcia (MFI). Wpływ warunków wytwarzania na właściwości włóknin został określony na podstawie analizy ich parametrów mechanicznych, szybkości sorpcji, krystaliczności i biodegradacji w środowisku kompostowym. Wykazano, że temperatura wytwarzania włóknin 238 °C pozwala na produkcję włóknin o dobrych właściwościach mechanicznych.
Czasopismo
Rocznik
Strony
70--76
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Poland, Łódź, Institute of Biopolymers and Chemical Fibres
autor
- Poland, Łódź, Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciencs and Textile Metrology
autor
autor
- Poland, Łódź, Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciencs and Textile Metrology
Bibliografia
- 1. Appel, et al. Method for forming non-woven webs. U.S. Patent 4,340,563.
- 2. Kinney. Process for forming non-woven filamentary structures from fibre forming synthetic organic polymers. U.S Patent 3,338,992.
- 3. Dorchner, et al. Continous filament nonwoven web. U.S. Patent 3,692,618.
- 4. Hartman. Process of forming non-woven fabric fleece. U.S. Patent 3,502,763.
- 5. Matsuki, et al. Apparatus for producing non-woven fleeces. U.S. Patent 8,802,817.
- 6. Bo Z. Effects of Processing Parameters on the Filamenty Fibre Diameter of Spunbonded Nonwoven Fabrics. Polymer Engineering and Science, 2007; 510-515.
- 7. Bo Z. Experimental Study and Numerical Analysis for Prediction of the Fibre Diameter of Polylactic Acid (PLA) Spunbonded Nonwovens, Fibres & Textiles in Eastern Europe 2009; 17, 5(76): 82-86.
- 8. Zhang D, Bhat G, Malkan S, Wadsworth L. Journal of Thermal Analysis 1997; 49: 161-167.
- 9. Ichikawa Y, Mizukoshi T. Chemistry and Materials Science, Synthetic Biodegradable Polymers. Advances in Polymer Science, Bionolle (Polybutylenesuccinate) 2012; 245: 285-313.
- 10. Fujimaki T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction, Polymer Degradation and Stability 1998; 59: 209-214.
- 11. Technical data sheet, Showa Highpolymer Co. LTD.
- 12. Wang at al., Biodegradable aliphatic polyester for use in nonwoven webs. WO 2008/008067 A1.
- 13. Fu-Jya at al. Biodegradable thermoplastic polyester composition with improved wettability. WO 00/12606.
- 14. Junji Iwata at al. Biodegradable nonwoven fabric and fibre product using the same. U.S. Patent 2012/0064789 A1.
- 15. Rizarelli P, Puglisi C, Montaudo G, Soil burial and enzymatic degradation in solution of aliphatic co-polyesters, Polymer Degradation and Stability 2004; 85: 855-863.
- 16. Ryan et al. Degradable polymer fibres; preparation; product and methods of use. EP 0 977 912 B1.
- 17. Takahashi et al. Nonwoven polyester fabric. U.S. Patent 5 525 409.
- 18. Endler B, Schmack G, Vogel R, Blechschmidt D, Linder R. Melt Processing of a New Biodegradable Synthetic Polymer in High-Speed Spinning and Underpressure Spunbonding Process. Journal of Polymers and the Environment, 2001; 9, 4: 149-156.
- 19. Bhat GS, Malkan SR. Extruded Continuous Filament Nonwovens: Advances in Scientific Aspects. Journal of Applied Polymer Science 2002; 83: 572-585.
- 20. Rabiej M, Rabiej S. Analysis of the Xray diffraction curves of polymers using computer program WAXSFIT (in Polish). ATH PRESS, Bielsko-Biała, 2006.
- 21. Twarowska-Schmidt K, Tomaszewski W. Evaluation of the Suitability of Selected Aliphatic Polyester Blends for Biodegradable Fibrous Material with Improved Elasticity, Fibres & Textiles in Eastern Europe 2008; 16, 3(68): 9-13.
- 22. Marija S. Nikolic, Jasna Djonlagic, Synthesis and characterization of biodegradablepoly(butylene succinateco- butylene adipate)s, Polymer Degradation and Stability 74, 2001, 263–270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8544b809-d94c-4ded-826e-b5a7b57f282d