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Abstract: We consider a steady-state heat conduction problem
P for the Poisson equation with mixed boundary conditions in a
bounded multidimensional domain Ω. We also consider a family of
problems Pα for the same Poisson equation with mixed boundary
conditions, α > 0 being the heat transfer coefficient defined on a
portion Γ1 of the boundary. We formulate simultaneous distributed
and Neumann boundary optimal control problems on the internal
energy g within Ω and the heat flux q, defined on the complementary
portion Γ2 of the boundary of Ω for quadratic cost functional. Here,
the control variable is the vector (g, q). We prove existence and
uniqueness of the optimal control (g, q) for the system state of P , and
(gα, qα) for the system state of Pα, for each α > 0, and we give the
corresponding optimality conditions. We prove strong convergence,
in suitable Sobolev spaces, of the vectorial optimal controls, system
and adjoint states governed by the problems Pα to the corresponding
vectorial optimal control, system and adjoint states governed by the
problem P , when the parameter α goes to infinity. We also obtain
estimations between the solutions of these vectorial optimal control
problems and the solution of two scalar optimal control problems
characterized by fixed g (with boundary optimal control q) and fixed
q (with distributed optimal control g), respectively, for cases both
of α > 0 and α = ∞.
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1. Introduction

We consider a bounded domain Ω in R
n, whose regular boundary Γ consist of

the union of the two disjoint portions Γ1 and Γ2 with med(Γi) > 0 for i = 1, 2.
We consider the following steady-state heat conduction problems P and Pα (for
each parameter value α > 0) respectively, with mixed boundary conditions:

−∆u = g in Ω u
∣

∣

Γ1

= b − ∂u

∂n

∣

∣

Γ2

= q (1)

−∆u = g in Ω − ∂u

∂n

∣

∣

Γ1

= α(u− b) − ∂u

∂n

∣

∣

Γ2

= q (2)

where g is the internal energy in Ω, b > 0 is the temperature on Γ1 for (1)
and the temperature of the external neighborhood of Γ1 for (2), q is the heat
flux on Γ2 and α > 0 is the heat transfer coefficient on Γ1 (Newton law or
Robin condition on Γ1). The following hypothesis: g ∈ L2(Ω), q ∈ L2(Γ2), and

b ∈ H
1

2 (Γ1) is assumed to hold. Problems (1) and (2) can be considered as the
steady-state Stefan problem for suitable data q, g and b, see Tarzia (1979), or
Tabacman and Tarzia (1989).

We denote by u(g,q) and u(α,g,q) the unique solutions of the elliptic prob-
lems (1) and (2), respectively, whose variational formulations are given, as in
Kinderlehrer and Stampacchia (1980), by:

a(u(g,q), v) = L(g,q)(v), ∀v ∈ V0, u(g,q) ∈ K (3)

aα(u(α,g,q), v) = L(α,g,q)(v), ∀v ∈ V, u(α,g,q) ∈ V (4)

where

V = H1(Ω), V0 = {v ∈ V/ v
∣

∣

Γ1

= 0}, K = v0 + V0,

R = L2(Γ1), H = L2(Ω), Q = L2(Γ2)

for v0 ∈ V given, with v0
∣

∣

Γ1

= b and

(g, h)H =

∫

Ω

gh dx; (q, η)Q =

∫

Γ2

qη dγ, (b, v)R =

∫

Γ1

bv dγ

a(u, v) =

∫

Ω

∇u.∇vdx; aα(u, v) = a(u, v) + α (u, v)R

L(g,q)(v) = (g, v)H − (q, v)Q; L(α,g,q)(v) = L(g,q)(v) + α (b, v)R.

The bilinear form a is coercive on V0, with coerciveness constant λ > 0
and the bilinear form aα is coercive on V with coerciveness constant λα =
λ1min(1, α), where λ1 > 0 is the coerciveness constant for the bilinear form a1,
see Kinderlehrer and Stampacchia (1980), or Tabacman and Tarzia (1989).
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We formulate the following simultaneous distributed and Neumann boundary
optimal control problems, see Lions (1968) or Tröltzsch (2010):

Find (g, q) ∈ H × Uad such that J(g, q) = min
g∈H,q∈Uad

J(g, q) (5)

Find (gα, qα) ∈ H ×Uad such that Jα(gα, qα) = min
g∈H,q∈Uad

Jα(g, q) (6)

with Uad = {q ∈ Q : q ≥ 0 on Γ2} and the cost functionals J : H ×Q→R
+
0 and

Jα : H ×Q→R
+
0 being given by:

J(g, q) =
1

2

∥

∥u(g,q) − zd
∥

∥

2

H
+

M1

2
‖g‖2H +

M2

2
‖q‖2Q (7)

Jα(g, q) =
1

2

∥

∥u(α,g,q) − zd
∥

∥

2

H
+

M1

2
‖g‖2H +

M2

2
‖q‖2Q (8)

where zd ∈ H , u(g,q) and u(α,g,q) are the unique solutions of the elliptic varia-
tional equalities (3) and (4) respectively, and the positive constants M1 and M2

are given. We remark that we denote the control variables by g and q, these
two variables corresponding usually to the internal energy and the heat flux
respectively, in heat transfer problems.

The use of the variational equality theory in connection with optimization
and optimal control problems was done in Belgacem, El Fekih and Metoui
(2003), Bensoussan (1974), Casas (1986), Casas and Raymond (2006), Kirchner,
Meidner and Vexler (2011), Mignot and Puel (1984).

In Section 2, we obtain the existence and uniqueness of the vectorial optimal
control (g, q) of the problem (5) and of the vectorial optimal control (gα, qα)
of the problem (6), for each α > 0. We also give the optimality conditions in
relation to the adjoint state p(g,q) for (5) and p(α,g

α
,q

α
) for (6).

In Section 3, we obtain estimations between the first component of the simul-
taneous optimal control g and the scalar optimal control g studied in Gariboldi
and Tarzia (2003) (see the optimization problem (18)), and the second compo-
nent of the simultaneous optimal control q and the scalar optimal control q stud-
ied in Gariboldi and Tarzia (2008) (see the optimization problem (19)). In the
optimal control problems (5) and (6) we have considered two control variables
simultaneously, that is, the solution is a vectorial optimal control, while in the
optimal control problems, given in Gariboldi and Tarzia (2003) and Gariboldi
and Tarzia (2008), respectively, we have considered only one control variable,
namely the solutions are scalar optimal controls. Moreover, we characterize the
optimal control (g, q) as a fixed point on H ×Q for a suitable operator W . In a
similar way, we obtain estimations for the optimal controls of the problems Pα,
for each α > 0, and we characterize the optimal control (gα, qα) as a fixed point
on H ×Q for a suitable operator Wα.

In Section 4, we prove the strong convergence, in suitable Sobolev spaces, of
the optimal controls (gα, qα) of the problems (6) to the optimal control (g, q) of
the problem (5), of the system states u(α,g

α
,q

α
) to the system state u(g,q), and
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of the adjoint states p(α,g
α
,q

α
) to the adjoint state p(g,q), when the parameter

α goes to infinity. We also prove the convergence of the corresponding cost
functional when α goes to infinity.

This asymptotic behavior can be considered to be very important in the
optimal control of heat transfer problems, because the Dirichlet boundary con-
dition, given in (1), can be approximated by the relevant physical condition
given by the Newton law or the Robin boundary condition given in (2), see
Carslaw and Jaeger (1959). Therefore, the goal of this paper is to approximate
a Dirichlet boundary condition in a vectorial optimal control problem, governed
by an elliptic variational equality, by a Robin boundary condition in a family of
vectorial optimal control problems, governed also by elliptic variational equali-
ties, for a large positive coefficient α. As the particular cases of our results can
be considered the ones given in Gariboldi and Tarzia (2003) when the scalar
control variable is the internal energy g for both state systems (1) and (2), and
in Gariboldi and Tarzia (2008) when the scalar control variable is the heat flux
q on the boundary Γ2 for both state systems (1) and (2). In Belgacem, El Fekih
and Metoui (2003) the control variable is the temperature b on the boundary
Γ1 for the state system (1), and the temperature of the external neighborhood
b on the boundary Γ1 for the state systems (2), this being essentially different
with respect to the present vectorial optimal control problems.

2. Existence and uniqueness of optimal controls

2.1. Problem P and its optimal control problem

Let C : H×Q→V0 be the application defined by C(g, q) = u(g,q)−u(0,0), where
u(0,0) is the solution of the problem (1) for g = 0 and q = 0. We define, in the
way similar to that in Gariboldi and Tarzia (2003, 2008), and Lions (1968), the
applications Π : (H ×Q)× (H ×Q)→R, and L : H ×Q→R as follows:

Π((g, q), (h, η)) = (C(g, q), C(h, η))H +M1(g, h)H +M2(q, η)Q

L((g, q)) = (C(g, q), zd − u(0,0))H , ∀ (g, q), (h, η) ∈ H ×Q.

For each (g, q) ∈ H ×Q, we define the adjoint state p(g,q) corresponding to
the problem (1), as the unique solution of the mixed elliptic problem

−∆p = u− zd in Ω, p
∣

∣

Γ1

= 0,
∂p

∂n

∣

∣

Γ2

= 0 (9)

whose variational formulation is given by

a(p(g,q), v) = (u(g,q) − zd, v)H , ∀v ∈ V0, p(g,q) ∈ V0 (10)

and we have the following properties.

Theorem 1 a) J is a coercive and strictly convex functional on H ×Q.
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b) The adjoint state p(g,q) satisfy, ∀(h, η) ∈ H ×Q:

a(p(g,q), C(h, η)) = (C(h, η), u(g,q) − zd)H = (h, p(g,q))H − (η, p(g,q))Q

c) J is Gâteaux differentiable and J ′ is given by, ∀(h, η) ∈ H ×Q:

J ′(g, q)(h− g, η − q) = Π((g, q), (h− g, η − q))− L(h− g, η − q) (11)

d) There exists a unique solution (g, q) ∈ H × Uad of the vectorial optimal
control problem (5) and its optimality condition is given by, ∀(h, η) ∈ H ×Uad:

(h− g, p(g,q) +M1g)H + (η − q,M2q − p(g,q))Q ≥ 0.

Proof (a) It is sufficient to prove that, ∀(g2, q2), (g1, q1) ∈ H×Q and ∀t ∈ [0, 1],
we have, see Lions (1968), Boukrouche and Tarzia (2007), or Tröltzsch (2010):

u((1−t)g2+tg1,(1−t)q2+tq1) = (1− t)u(g2,q2) + tu(g1,q1) (12)

and

(1− t)J(g2, q2) + tJ(g1, q1)− J((1 − t)(g2, q2) + t(g1, q1)) =

=
t(1− t)

2

[

‖u(g2,q2) − u(g1,q1)‖2H +M1‖g2 − g1‖2H +M2‖q2 − q1‖2Q
]

≥

≥ Mt(1− t)

2
‖(g2 − g1, q2 − q1)‖2H×Q, (13)

and

a(p(g,q), C(h, η)) = (−∆p(g,q), u(g,q) − u(0,0))H =

= (h, p(g,q))H − (η, p(g,q))Q (14)

where

‖(g, q)‖2H×Q = ‖g‖2H + ‖q‖2Q, M = Min(M1,M2) > 0. �

2.2. Problem Pα and its optimal control problem

Let Cα : H ×Q→V be the application defined by Cα(g, q) = u(α,g,q) − u(α,0,0),
where u(α,0,0) is the solution of the problem (2) for g = 0 and q = 0. We define
the applications Πα : (H×Q)×(H×Q)→R and Lα : H×Q→R by the following
expressions, ∀ (g, q), (h, η) ∈ H ×Q:

Πα((g, q), (h, η)) = (Cα(g, q), Cα(h, η))H +M1(g, h)H +M2(q, η)Q,

Lα(q) = (Cα(g, q), zd − u(α,0,0))H .
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For each (g, q) ∈ H × Q and α > 0, we define the adjoint state p(α,g,q),
corresponding to the problem (2), as the unique solution of the mixed elliptic
problem

−∆p = u− zd in Ω, − ∂p

∂n

∣

∣

Γ1

= αp,
∂p

∂n

∣

∣

Γ2

= 0, (15)

whose variational formulation is given by

aα(p(α,g,q), v) = (u(α,g,q) − zd, v)H , ∀v ∈ V, p(α,g,q) ∈ V. (16)

We can obtain similar properties to Theorem 2.1, following Boukrouche and
Tarzia (2007), Kinderlehrer and Stampacchia (1980), Lions (1968), or Tröltzsch
(2010).

Theorem 2 We have, for each α > 0, the following properties:
a) Jα is a coercive and strictly convex functional on H ×Q.
b) The adjoint state p(α,g,q) satisfies, ∀(h, η) ∈ H ×Q:

aα(p(α,g,q), Cα(h, η)) = (Cα(h, η), u(α,g,q)−zd)H = (h, p(α,g,q))H−(η, p(α,g,q))Q.

c) Jα is Gâteaux differentiable and J ′

α is given by, ∀(h, η) ∈ H ×Q:

J ′

α(g, q)(h− g, η − q) = Πα((g, q), (h− g, η − q))− Lα(h− g, η − q). (17)

d) There exists a unique solution (gα, qα) ∈ H×Uad of the vectorial optimal
control problem (6) and its optimality condition is given by, ∀(h, η) ∈ H ×Uad:

(h− gα, p(α,g
α
,q

α
) +M1gα)H + (η − qα,M2qα − p(α,g

α
,q

α
))Q ≥ 0.

3. Estimations

3.1. Estimations with respect to the problem P

We consider the scalar distributed optimal control problem:

Find g ∈ H such that J1(g) = min
g∈H

J1(g), for fixed q ∈ Q, (18)

and the scalar Neumann boundary optimal control problem:

Find q ∈ Uad such that J2(q) = min
q∈Uad

J2(q), for fixed g ∈ H, (19)

where J1 is the cost functional given in Gariboldi and Tarzia (2003) plus the

constant M2

2 ‖q‖2Q, and J2 is the functional given in Gariboldi and Tarzia (2008)

plus the constant M1

2 ‖g‖2H , that is, J1 : H→R
+
0 and J2 : Q→R

+
0 , are given by:

J1(g) =
1

2
‖ug − zd‖2H +

M1

2
‖g‖2H +

M2

2
‖q‖2Q , (fixed q ∈ Q) (20)

J2(q) =
1

2
‖uq − zd‖2H +

M2

2
‖q‖2Q +

M1

2
‖g‖2H , (fixed g ∈ H) (21)

where ug and uq are the unique solutions of the problem (1) for fixed q and g
data, respectively.
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Remark 1 The functionals J , J1 and J2 satisfy the elemental estimations

J(g, q) ≤ J1(g), ∀q ∈ Q and J(g, q) ≤ J2(q), ∀g ∈ H.

In the next theorem we will obtain estimations between the solution of the
scalar distributed optimal control problem (18) with the first component of the
solution of the vectorial distributed and Neumann boundary optimal control
problem (5), and between the solution of the scalar Neumann boundary optimal
control problem (19) with the second component of the solution of the vectorial
distributed and Neumann boundary optimal control problem (5).

Theorem 3 If (g, q) ∈ H × Uad is the unique solution of the vectorial optimal
control problem (5), and g and q are the unique solutions of the scalar optimal
control problems (18) and (19) respectively, then:

‖q − q‖Q ≤ ‖γ0‖
λM2

‖u(g,q) − u(g,q)‖H (22)

‖g − g‖H ≤ 1

λM1
‖u(g,q) − u(g,q)‖H , (23)

where γ0 is the trace operator.

Proof For g = g, from the optimality condition for q, see Gariboldi and Tarzia
(2008), we have

(M2q − p(g,q), η − q)Q ≥ 0, ∀η ∈ Uad. (24)

If we take h = g ∈ H in the optimality condition for (g, q), we obtain

(M2q − p(g,q), η − q)Q ≥ 0, ∀η ∈ Uad. (25)

Now, taking η = q ∈ Uad in (24) and η = q ∈ Uad in (25), we obtain

(M2(q − q) + (p(g,q) − p(g,q)), q − q)Q ≥ 0,

and by using ‖p(g,q) − p(g,q)‖V ≤ 1
λ‖u(g,q) − u(g,q)‖H we deduce

‖q − q‖Q ≤ ‖γ0‖
M2

‖p(g,q) − p(g,q)‖V ≤ ‖γ0‖
λM2

‖u(g,q) − u(g,q)‖H ;

therefore the estimation (22) holds. Similarly, the estimation (23) holds. �

When we consider the vectorial distributed and Neumann boundary optimal
control problem (5) without restrictions, i.e. Uad = Q, then we can characterize
the solution of (5) by using the fixed point theory.

Let W : H ×Q → H ×Q be the operator defined by

W (g, q) = (− 1

M1
p(g,q),

1

M2
p(g,q)). (26)
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Theorem 4 There exists a positive constant C0 = C0(λ, γ0,M1,M2) such that,
∀(g1, q1), (g2, q2) ∈ H ×Q:

‖W (g2, q2)−W (g1, q1)‖H×Q ≤ C0‖(g2, q2)− (g1, q1)‖H×Q (27)

and W is a contraction operator if and only if data satisfy the following condi-
tion:

C0 =

√
2

λ2

√

1

M2
1

+
‖γ0‖2
M2

2

(1 + ‖γ0‖) < 1. (28)

Proof By using the estimations, ∀(g1, q1), (g2, q2) ∈ H ×Q:

‖u(g1,q1) − u(g2,q2)‖V ≤ 1

λ
(‖g2 − g1‖H + ‖γ0‖‖q2 − q1‖Q), (29)

‖p(g1,q1) − p(g2,q2)‖V ≤ 1

λ
‖u(g1,q1) − u(g2,q2)‖H (30)

we obtain

‖W (g2, q2)−W (g1, q1)‖2H×Q ≤ (
1

M2
1

+
‖γ0‖2
M2

2

)
1

λ4
[‖g2−g1‖H+‖γ0‖‖q2−q1‖Q]2.

Then (27) holds and the operator W is a contraction if and only if data satisfy
inequality (28). �

Corollary 1 If data satisfy inequality (28) then the unique solution (g, q) ∈
H×Q of the vectorial optimal control problem (5) can be obtained as the unique
fixed point of the operator W , that is:

W (g, q) = (− 1

M1
p(g,q),

1

M2
p(g,q)) = (g, q).

3.2. Estimations with respect to the problem Pα

For each α > 0, we consider the scalar optimal control problems:

Find gα ∈ H such that J1α(gα) = min
g∈H

J1α(g), (31)

Find qα ∈ Uad such that J2α(qα) = min
q∈Uad

J2α(q), (32)

where J1α : H→R
+
0 and J2α : Q→R

+
0 are given by:

J1α(g) =
1

2
‖uαg − zd‖2H +

M1

2
‖g‖2H +

M2

2
‖q‖2Q , (fixed q ∈ Q) (33)

J2α(q) =
1

2
‖uαq − zd‖2H +

M2

2
‖q‖2Q +

M1

2
‖g‖2H , (fixed g ∈ H) (34)

where J1α is the functional studied in Gariboldi and Tarzia (2003) plus the

constant M2

2 ‖q‖2Q, J2α is the functional studied in Gariboldi and Tarzia (2008)

plus the constant M1

2 ‖g‖2H , and the system states uαg and uαq are the unique
solutions of the problem (2) for fixed data q and g, respectively.
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Remark 2 The functionals Jα, J1α and J2α satisfy the estimations

Jα(gα, qα) ≤ J1α(gα), ∀q ∈ Q and Jα(gα, qα) ≤ J2α(qα), ∀g ∈ H.

Estimations between the solution of the scalar distributed optimal control
problem (31) with respect to the first component of the solution of the vectorial
distributed and Neumann boundary optimal control problem (6), and estima-
tions between the solution of the scalar Neumann boundary optimal control
problem (32) with respect to the second component of the solution of the vecto-
rial distributed and Neumann boundary optimal control problem (6) are given
in the next theorem whose proof is omitted.

Theorem 5 If (gα, qα) ∈ H × Uad is the unique solution of the vectorial opti-
mal control problem (6), and gα and qα are the unique solutions of the scalar
optimal control problems (31) and (32), respectively, then we have the following
estimations

‖qα − qα‖Q ≤ ‖γ0‖
λM2

‖u(α,g
α
,q

α
) − u(α,g

α
,q

α
)‖H

‖gα − gα‖H ≤ 1

λM1
‖u(α,g

α
,q

α
) − u(α,g

α
,q

α
)‖H .

In the way similar to Theorem 4, we can now characterize the solution of
the vectorial distributed and Neumann boundary optimal control problem (6),
without restrictions, proving that a suitable operator Wα is a contraction. It is
presented in the next theorem and the proof is omitted. We define the operator
Wα : H ×Q → H ×Q, for each α > 0, by the expression

Wα(g, q) = (− 1

M1
p(α,g,q),

1

M2
p(α,g,q)). (35)

Theorem 6 Wα is a Lipschitz operator over H × Q, that is, there exists a
positive constant C0α = C0α(λα, γ0,M1,M2), such that:

‖Wα(g2, q2)−Wα(g1, q1)‖H×Q ≤ C0α‖(g2 − g1, q2 − q1)‖H×Q (36)

and Wα is a contraction operator if and only if data satisfy the following in-
equality:

C0α =

√
2

λ2
α

√

1

M2
1

+
‖γ0‖2
M2

2

(1 + ‖γ0‖) < 1. (37)

Corollary 2 If data satisfy inequality C0α < 1, then the unique solution
(gα, qα) ∈ H×Q of the vectorial optimal control problem (6) can be obtained as
the unique fixed point of the operator Wα, that is:

Wα(gα, qα) = (− 1

M1
p(α,g

α
,q

α
),

1

M2
p(α,g

α
,q

α
)) = (gα, qα).
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4. Convergence when α → +∞
Lemma 1 For each α > 0, (g, q) ∈ H ×Q, b ∈ H1/2(Γ1), we have the following
limits:

i) lim
α→∞

‖u(α,g,q) − u(g,q)‖V = 0 ii) lim
α→∞

‖p(α,g,q) − p(g,q)‖V = 0. (38)

Proof We proceed in a similar way to the one given in Gariboldi and Tarzia
(2003) and in Gariboldi and Tarzia (2008).

Theorem 7 i) If u(g,q) and u(α,g
α
,q

α
) are the unique system states, correspond-

ing of the vectorial optimal control problems (5) and (6), respectively, then:

lim
α→∞

‖u(α,g
α
,q

α
) − u(g,q)‖V = 0. (39)

ii) If p(g,q) and p(α,g
α
,q

α
) are the unique adjoint states, corresponding to the

vectorial optimal control problems (5) and (6), respectively, then:

lim
α→∞

‖p(α,g
α
,q

α
) − p(g,q)‖V = 0. (40)

iii) If (g, q) and (gα, qα) are the unique solutions of the simultaneous dis-
tributed and Neumann boundary optimal control problems (5) and (6), respec-
tively, then:

lim
α→∞

‖(gα, qα)− (g, q)‖H×Q = 0. (41)

Proof The proof is given in two steps:
Step 1. From the optimal control problem (6) we deduce that there exist

positive constants C1, C2, and C3, independent of α, such that

‖u(α,g
α
,q

α
) − zd‖H ≤ C1, ‖gα‖H ≤ C2, ‖qα‖Q ≤ C3. (42)

Now, if we take v = u(α,g
α
,q

α
)−u(g,q) ∈ V in the variational equality (4), follow-

ing Gariboldi and Tarzia (2003) or Gariboldi and Tarzia (2008), we obtain, for
α > 1, ‖u(α,g

α
,q

α
)‖V ≤ C4 where C4 = C4(C2, C3, γ0, u(g,q), λ1) is independent

of α. Therefore,

∃µ ∈ K such that u(α,g
α
,q

α
) ⇀ µ weakly in V, when α → +∞. (43)

Taking v = p(α,g
α
,q

α
) − p(g,q) ∈ V in the variational equality (16), we ob-

tain that there exists a positive constant C5 = C5(C1, p(g,q), λ1), such that

‖p(α,g
α
,q

α
)‖V ≤ C5 and next

∃ξ ∈ V0 such that p(α,g
α
,q

α
) ⇀ ξ weakly in V, when α → +∞. (44)

Moreover, from (42), we deduce that there exist f ∈ Q and h ∈ H such that



Existence, uniqueness and convergence of simultaneous distributed-boundary problems 15

qα ⇀ f weakly in Q, when α → +∞ (45)

gα ⇀ h weakly in H, when α → +∞. (46)

For v ∈ V0, taking into account (43), (45), (46) and taking the limit as α goes
to infinity, we have that

a(µ, v) = (h, v)H − (f, v)Q, ∀v ∈ V0, µ ∈ K (47)

and by the uniqueness of the solution of (3), we get µ = uhf .
Now, for v ∈ V0, taking into account (44), with the parameter α going to infinity
in the variational equality (16), we have that

a(ξ, v) = (uhf − zd, v)H , ∀v ∈ V0, ξ ∈ V0 (48)

and from the uniqueness of the solution of (10), we get ξ = phf . Next,

J(h, f) ≤ lim inf
α→∞

Jα(gα, qα) ≤ lim inf
α→∞

Jα(h
′, f ′) =

= lim
α→∞

Jα(h
′, f ′) = J(h′, f ′), ∀(h′, f ′) ∈ H ×Q,

and from the uniqueness of the solution to the problem (5), we have that h = g
and f = q. Therefore, we have proved that

u(α,g
α
,q

α
) ⇀ u(g,q) weakly in V, when α → +∞ (49)

p(α,g
α
,q

α
) ⇀ p(g,q) weakly in V, when α → +∞. (50)

Step 2. Taking h = 0 and η = q in the optimality condition for the vectorial
optimal control problem (6), h = 0 and η = qα in the optimality condition for
the vectorial optimal control problem (5), we have

(qα − q,M2(q − qα) + (p(α,g
α
,q

α
) − p(g,q)))Q ≥ 0;

then, we deduce that

‖q − qα‖Q ≤ ‖γ0‖
M2

‖p(α,g
α
,q

α
) − p(g,q)‖V . (51)

Next, in a similar way, taking h = g and η = 0 in the optimality condition
for the problem (6) and h = gα and η = 0 in the optimality condition for the
problem (5), we prove that

‖g − gα‖H ≤ 1

M2
‖p(α,g

α
,q

α
) − p(g,q)‖V . (52)

Now, from (49) and the following inequalities, for α > 1,
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λ1‖u(α,g
α
,q

α
) − u(g,q)‖2V + (α − 1)‖u(α,g

α
,q

α
) − u(g,q)‖2R ≤

≤ (g, u(α,g
α
,q

α
) − u(g,q))H − (q, u(α,g

α
,q

α
) − u(g,q))Q

−a(u(g,q), u(α,g
α
,q

α
) − u(g,q))

we get that the result (39) holds. In a similar way, from (50) and the inequality

λ1‖p(α,g
α
,q

α
) − p(g,q)‖2V ≤

≤ (u(α,g
α
,q

α
) − zd, p(α,g

α
,q

α
) − p(g,q))H−

−a(p(g,q), p(α,g
α
,q

α
) − p(g,q))− α(p(g,q), p(α,g

α
,q

α
) − p(g,q))R

we obtain the limit (40). Finally, from (39), (40), and the estimations (51) and
(52), we deduce that the limit (41) holds. �

Corollary 3 If (g, q) and (gα, qα) are the unique solutions of the simultane-
ous distributed and Neumann boundary optimal control problems (5) and (6),
respectively, then we have:

lim
α→∞

|Jα(gα, qα)− J(g, q)| = 0.

Proof The conclusion follows from the definition of J , Jα and the last theo-
rem. �
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