PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence and stability of impulsive coupled system of fractional integrodifferential equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this manuscript, we deal with a class and coupled system of implicit fractional differential equations, having some initial and impulsive conditions. Existence and uniqueness results are obtained by means of Banach’s contraction mapping principle and Krasnoselskii’s fixed point theorem. Hyers–Ulam stability is investigated by using classical technique of nonlinear functional analysis. Finally, we provide illustrative examples to support our obtained results.
Wydawca
Rocznik
Strony
296--335
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
autor
  • Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
autor
  • Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
  • Department of Mathematics and General Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia
  • School of Mathematics & Computer Science, Shangrao Normal University, Shangrao 334001, China
Bibliografia
  • [1] Dalir M., Bashour M., Applications of fractional calculus, Appl. Math. Sci., 2010, 4, 1021-1032
  • [2] Khan H., Khan A., Abdeljawad T., Alkhazzan A., Existence results in Banach space for a nonlinear impulsive system, Adv. Difference Equ., 2019, 2019:18
  • [3] Khan A., Gómez-Aguilar J. F., Khan T. S., Khan H., Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Solitons Fractals, 2019, 122, 119-128
  • [4] Khan H., Abdeljawad T., Aslam M., Khan R. A., Khan A., Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation, Adv. Difference Equ., 2019, 2019:104
  • [5] Khan H., Gómez-Aguilar J. F., Khan A., Khan T. S., Stability analysis for fractional order advection reaction diffusion system, Phys. A, 2019, 521, 737-751
  • [6] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2000
  • [7] Meral F., Royston T., Magin R., Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul., 2010, 15, 939-945
  • [8] Benchohra M., Graef J. R., Hamani S., Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 2008, 87, 851-863
  • [9] Abdeljawad T., Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Difference Equ., 2017,2017:313
  • [10] Babakhani A., Abdeljawad T., A Caputo fractional order boundary value problem with integral boundary conditions, J. Comput. Anal. Appl., 2013, 15(4), 753-763
  • [11] Abdeljawad T., Jarad F., Baleanu D., On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Science in China, Mathematics, 2008, 51, 1775-1786
  • [12] Abdeljawad T., Baleanu D., Jarad F., Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 2008, 49(8), 083507-083507-11
  • [13] Abdeljawad T., Al-Mdallal Q. M., Discrete Mittag-Leffer kernel type fractional difference initial value problems and Gronwalls inequality, J. Comput. Appl. Math., 2018, 339, 218-230
  • [14] Kilbas A. A., Marichev O. I., Samko S. G., Fractional integrals and derivatives (theory and applications), Switzerland: Gordonand Breach, 1993
  • [15] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, 1993
  • [16] Rehman M., Khan R., A note on boundary value problems for a coupled system of fractional differential equations, Comput. Math Appl., 2011, 61, 2630-2637
  • [17] Zada A., Ali S., Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlinear Sci. Numer. Simul., 2018, 19, 763-774
  • [18] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, The Netherlands, 2006
  • [19] Podlubny I., Fractional Differential Equations, Academic Press, New York, 1999
  • [20] Ahmad B., Nieto J. J., Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Boun. Value Prob., 2009, 2009:708576
  • [21] Chalishajar D. N., Karthikeyan K., Boundary value problems for impulsive fractional evolution integrodifferential equations with Gronwall’s inequality in Banach spaces, J. Dis. Nonl. Compl., 2014, 3, 33-48
  • [22] Chalishajar D. N., Karthikeyan K., Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving Gronwall’s inequality in Banach spaces, Acta Math. Sci. Ser., 2013, 33, 758-772
  • [23] Khan A., Shah K., Li Y., Khan T. S., Ulam type stability for a coupled system of boundary value problems of nonlinear fractional differential, J. Funct. Spaces, 2017, Article ID 3046013
  • [24] Muslim M., Kumar A., Agarwal R. P., Exact controllability of fractional integro-differential systems of order α∈(1,2] with deviated argument, Analele Universitatii Oradea, XXIV, 2017, 59, 185-194
  • [25] Shah R., Zada A., A fixed point approach to the stability of a nonlinear volterra integrodifferential equations with delay, Hacettepe J. Math. Stat., 2018, 47, 615-623 [26] Ahmad B., Nieto J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comp. Math. Appl., 2009, 58, 1838-1843
  • [27] Laskin N., Fractional market dynamics, Phys. A, 2000, 287, 482-492
  • [28] Lin W., Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 2007, 332, 709-726
  • [29] Ravichandran C., Logeswari K., Jarad F., New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Solitons Fractals, 2019, 125, 194-200
  • [30] Gambo Y. Y., Ameen R., Jarad F., Abdeljawad T., Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives, Adv. Difference Equ., 2018, 2018:134
  • [31] Chalishajar D., Kumar A., Existence, uniqueness and Ulam’s stability of solutions for a coupled system of fractional differential equations with integral boundary conditions, Mathematics, 2018, 6, 96
  • [32] Alzabut J., Almost periodic solutions for impulsive delay Nicholsons blowflies population model, J. Comput. Appl. Math.,2010, 234, 233-239
  • [33] Georgieva A., Kostadinov S., Stamov G. T., Alzabut J. O., On Lp(k) equivalence of impulsive differential equations and its applications to partial impulsive differential equations, Adv. Difference Equ., 2012, 2012:144
  • [34] Lakshmikantham V., Leela S., Vasundhara J., Theory of fractional dynamic systems, Cambridge, UK: Cambridge Academic Publishers, 2009
  • [35] Lakshmikanthan V., Bainov D. D., Simeonov P.S., Theory of impulsive differential equations, Singapore: World Scientific, 1989
  • [36] Lupulescu V., Zada A., Linear impulsive dynamic systems on time scales, Electron. J. Qual. Theory Differ. Equ., 2010, 11, 1-30
  • [37] Tang S., Zada A., Faisal S., El-Sheikh M. M. A., Li T., Stability of higher-order nonlinear impulsive differential equations, J. Nonlinear Sci. Appl., 2016, 9, 4713-4721
  • [38] Wang J., Zada A., Ali W., Ulam’s-type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces, Int. J. Nonlin. Sci. Num., 2018, 19, 553-560
  • [39] Zada A., Faisal S., Li Y., On the Hyers-Ulam stability of first order impulsive delay differential equations, J. Funct. Spaces., 2016, Article ID 8164978
  • [40] Zada A., Riaz U., Khan F. U., Hyers-Ulam stability of impulsive integral equation, Boll. Unione Mat. Ital., 2019, 12(3), 453-467
  • [41] Zada A., Mashal A., Stability analysis ofnthorder nonlinear impulsive differential equations in quasi-Banach space, Numer. Funct. Anal. Optim., 2019, DOI:10.1080/01630563.2019.1628049
  • [42] Bainov D., Dimitrova M., Dishliev A., Oscillation of the bounded solutions of impulsive differential difference equations of second order, Appl. Math. Comput., 2000, 114, 61-68
  • [43] Chernousko F., Akulenko L., Sokolov B., Control of Oscilations, Moskow: Nauka, 1980
  • [44] Chua L. O., Yang L., Cellular neural networks: applications, IEEE Trans. Circ. syst., 1998, 35, 1273-1290
  • [45] Stamov G. Tr., Alzabut J. O., Almost periodic solutions of impulsive integrodifferential neural networks, Math. Model. Analysis, 2010, 15, 505-516
  • [46] Popov E., The Dynamics of Automatic Control Systems, Moskow: Goste–hizdat, 1964
  • [47] Andronov A., Witt A., Haykin S., Oscilation Theory, Moskow: Nauka, 1981
  • [48] Zavalishchin S., Sesekin A., Impulsive Processes: Models and Applications, Moskow: Nauka, 1991
  • [49] Babitskii V., Krupenin V., Vibration in Strongly Nonlinear Systems, Moskow: Nauka, 1985
  • [50] Stamov G. Tr., Alzabut J. O., Atanasov P., Stamov A. G., Almost periodic solutions for an impulsive delay model of price fluctuations in commodity markets, Nonlinear Anal. RWA, 2011, 12, 3170-3176
  • [51] Wang J., Zhang Y., Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 2014, 63(8), 1181-1190
  • [52] Li T., Zada A., Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces, Adv. Difference Equ., 2016, 2016:153
  • [53] Zada A., Wang P., Lassoued D., Li T. X., Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems, Adv. Difference Equ., 2017, 2017:192
  • [54] Ali S., Abdeljawad T., Shah K., Jarad F., Arif M., Computation of iterative solutions along with stability analysis to a coupled system of fractional order differential equations, Adv. Difference Equ., 2019, 2019:215
  • [55] Ali A., Shah K., Jarad F., Gupta V., Abdeljawad T., Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Difference Equ., 2019, 2019:101
  • [56] Jarad F., Abdeljawad T., Hammouch Z., On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 2018, 117, 16-20
  • [57] Asma, Ali A., Shah K., Jarad F., Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions, Adv. Difference Equ., 2019, 2019:7
  • [58] Ameena R., Jaradb F., Abdeljawad T., Ulam stability for delay fractional differential equations with a generalized Caputo derivative, Filomat, 2018, 32, 5265-5274
  • [59] Hyers D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 1941, 27, 222-224
  • [60] Ulam S. M., Problems in Modern Mathematics, Courier Corporation, 2004.
  • [61] Zada A., Shah S. O., Shah R., Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problem, Appl. Math. Comput., 2015, 271, 512-518
  • [62] Zada A., Shah S. O., Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacettepe J. Math. Stat., 2018, 47, 1196-1205
  • [63] Wang J., Zhou Y., Wei W., Study in fractional differential equations by means of topological degree methods, Num. Func. Anal. Opti., 2012, 33, 216-238
  • [64] Tian Y., Ba Z., Impulsive boundary value problem for differential equations with fractional order, Differ. Equ. Dyn. Syst., 2013,21, 253-260
  • [65] Zhang X., Zhu C., Wu Z., Solvability for a coupled system of fractional differential equations with impulsis at resonance, Boun. Value Prob., 2013, 2013:80
  • [66] Shah K., Khalil H., Khan R. A., Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Elsevier Science B. V., Amsterdam, The Netherlands, 2015, 77, 240-246
  • [67] Benchohra M., Lazreg J. E., On the stability of nonlinear implicit fractional differential equations, Le Matematiche, 2015, 70, 49-61
  • [68] Zada A., Ali S., Li Y., Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Difference Equ., 2017, 2017:317
  • [69] Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cone, Academic Press, Orlando, 1988
  • [70] Yurko V. A., Boundary value problems with discontinuity conditions in an interior point of the interval, J. Diff. Equa., 2000, 36, 1266–1269
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-853df46f-4a81-4759-b970-3bcb4f8eeb1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.