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ABSTRACT: This paper explores the use of machine learning and deep learning artificial intelligence (AI)
techniques as a means to integrate multiple sensor modalities into a cohesive approach to navigation for
autonomous ships. Considered is the case of a fully autonomous ship capable of making decisions and
determining actions by itself without active supervision on the part of onboard crew or remote human
operators. These techniques, when combined with advanced sensor capabilities, have been touted as a means to
overcome existing technical and human limitations as unmanned and autonomous ships become operational
presently and in upcoming years. Promises of the extraordinary capabilities of these technologies that may even
exceed those of crewmembers for decision making under comparable conditions must be tempered with
realistic expectations as to their ultimate technical potential, their use in the maritime domain, vulnerabilities
that may preclude their safe operation; and methods for development, integration and test. The results of
research performed by the author in specific applications of machine learning and Al to shipping are presented
citing key factors that must be achieved for certification of these technologies as being suitable for their
intended purpose. Recommendations are made for strategies to surmount present limitations in the
development, evaluation and deployment of intelligent maritime systems that may accommodate future
technological advances. Lessons learned that may be applied to improve safety of navigation for conventional
shipping are also provided.

1 INTRODUCTION gasses into the environment, accounting for between

2.8%-3.1% of annual emissions.[IMO 2015]

The motivation for autonomous commercial ships
stems from a desire to enhance safety, reduce costs
and decrease environmental risk associated with
shipping operations. Human error is estimated to be
responsible for between 76%-94% of marine
casualties.[Allianz 2012] Seafarers and human
support can account for 30%-44% of ships costs in
terms of salaries, crew quarters, bridge space, human
interfaces and controls, and environmental systems
(heating and air conditioning, food, water, lighting,
plumbing, etc.).[Minter 2017, CBI 2018] Maritime
shipping is a significant contributor of greenhouse

Much can be said about how and when unmanned
and autonomous ships may be realized in the future.
A classic perception of how a remotely controlled
vessel may operate is characterized as follows:

The captain with a giant screen which overlays the
environment around his vessel with an augmented reality
view can navigate confidently wusing the computer-
enhanced vision of the world, with artificial intelligence
spotting and labeling every other water user, the shore, and
navigation markers.[Stewart 2018].

503



Expanding this concept to autonomous ships
merely requires replacing the captain with an
automaton. While this may be well stated as a goal,
such a bold level of self-assurance, confidence and
trust in the capability and correctness of sensor and
reasoning systems and their proper integration on
which the captain must rely should be considered
premature as the safe and reliable performance of
such systems has yet to be proven. Furthermore, in
this scenario there is no consideration of situational
awareness below the waterline.

Machine learning and deep learning artificial
intelligence (AI) technologies form the core decision
making capability to navigate Maritime Autonomous
Surface Ships (MASS). The results of research
presented focuses on the specific requirements of
vessel navigation in terms of the sensors needed to
survey the immediate vicinity to achieve situational
awareness for tactical decision making in response to
immediate threats and conditions. However, also
considered is the larger context of Maritime Domain
Awareness (MDA) as relates to the successful
completion of a voyage by extending shipboard
capabilities using external sensors and information
resources. The nature and characteristics of sensor
data is also considered in terms of the information to
be conveyed and limitations of the data taking into
account completeness, accuracy and latency.

Having considered the scope of the information
that is available, an assessment of the processes,
methods and framework used in the development,
testing and deployment of decision making products
is made. Issues considered include the proper use of
machine learning and deep learning Al, verification of
implementation as being correct and suitable for their
intended purpose, and ultimately to determine
whether their scope is sufficient to ensure safety of
navigation. Key factors influencing the probabilities
of achieving the goals of enhanced safety, reduced
costs and decreased environmental risk are discussed
based upon the results of experiments performed.

Conclusions are provided regarding critical gaps
in sensor coverage and capabilities as well as
shortfalls in MASS-enabling technologies that are
presently not considered by industry, regulatory
authorities and academia. Recommendations are also
given to address these deficiencies to help advance
MASS goals and objectives.

2 REGULATORY ISSUES

For many decades the International Regulations for
Preventing Collisions at Sea (COLREGS) have
required that “every vessel shall at all times maintain
a proper look-out by sight and hearing as well as by
all available means appropriate in the prevailing
circumstances and conditions so as to make a full
appraisal of the situation and the risk of collision.”
[COLREGS rule 5]. Vessels are further required to
make proper use of radar equipment to obtain early
warning of risk of collision, to use radar plotting or
equivalent systematic observation of detected objects;
and are warned that assumptions shall not be made
on the basis of scanty information.[COLREGS rule
7b,c] Such regulations were written for vessels staffed
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by seafarers who rely on their human senses and
interpretation ~ of  environmental  conditions,
navigation charts and instruments based upon
knowledge and experience to execute a safe voyage.
The present regulatory framework is limited to
human vision and hearing, echosounder, radar,
Automatic Radar Plotting Aid (ARPA), Automated
Identification System (AIS), Electronic Chart Display
Information System (ECDIS) and Global Satellite
Navigation System (GNSS) to fulfill these
requirements. However, these technologies fall far
short of ensuring safety of navigation by remotely
controlled or autonomous vessels. The International
Maritime Organization (IMO) is now conducting a
regulatory scoping exercise to amend the regulatory
framework to enable the safe, secure and
environmentally friendly operation of partly or
entirely unmanned MASS and their interaction and
co-existence with manned ships within the existing
IMO instruments.[MSC 98/20/2] In view of these
present international regulations MASS research and
development is currently limited to within national
waters and between adjacent countries.

3 ENVIRONMENTAL SENSING

Sensor systems dedicated to monitoring the surface
ship maritime environment, illustrated in Figure 1,
are available from three perspectives: the water’s
surface, below sea level and from space. Surface and
subsea systems generally provide real time ship-
centric, line of sight data and imagery while space-
based systems provide access to data, information
and imagery available worldwide from a wide variety
of sources external to the vessel.
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Figure 1. Maritime Environment Sensor

Perspectives.

System

The scope of sensors needed to safely navigate
MASS along long stretches of relatively low traffic,
deep ocean routes does not differ much from
navigation in shallow, coastal waters amongst
archipelagos crowded with both working and
recreational vessels. More significant is the ability to
properly integrate multiple sensor modalities with
reasoning about vast amounts of data and imagery to
create the information needed to make and explain
observations, critically assess their significance



regarding potential threats, vessel capability and
performance; and to react to these observations to
minimize risk, ensure the voyage is completed safely,
recover from dangerous situations and, in the event
recovery is not possible, to effectively preserve life,
property and the environment. The scope of maritime
sensors (beyond presently mandated equipment)
available from all perspectives and the fusion of
sensor data and imagery to create information for use
by automated reasoning processes on board vessels
and land-based operators are described in this
paragraph. The methods and techniques used to
analyze this information and take all appropriate
action is covered in paragraph 4.

3.1 Shipboard Sensors

Sensor capabilities needed on board both remotely
controlled and autonomous ships must not merely
replicate the sight and hearing of seafarers, but must
exceed their abilities by enabling constant vision
through 360° around the vessel in four dimensions
(x,y,z,time) at higher resolution and greater accuracy
than is humanly possible. This includes the ability to
see in the dark in all weather conditions including
heavy rain, snow and through fog over the water’s
surface and to hear sounds associated with ships, aids
to navigation (ATON) and in the environment such as
sound signals and waves crashing on rocks. Also
needed is the ability to see underwater ahead and
around the vessel to detect and respond to threats not
charted and to avoid groundings and allision. MASS
must then reason with this information over extended
periods of time in a manner that is consistent, correct
and verifiable.

Shipboard sensors required under IMO vessel
carriage requirements include human sight and
hearing, often augmented with binoculars and hailer
listening capabilities. This is supplemented with
radar to help detect and avoid other vessels, ATON
and land masses. An echosounder is also needed to
maintain constant vigilance of water depth below the
keel. ECDIS displays electronic navigation chart
(ENC) information that should represent the most
recent hydrographic surveys of the areas sailed, the
locations of channels and ATON, and known hazards
to navigation likely to be encountered along the route.
AIS provides a wealth of information on nearby
vessels related to position, speed and identity, and
routing. GNSS provides context for all of the above
information in terms of vessel geographic position,
speed and direction of transit.

These required sensors perform very well in
extending the sight of seafarers at sea to accomplish
traditional navigation functions. However, the IMO
regulatory framework has failed to keep up with new
technologies that can also enhance safety of
navigation for conventional ships. With the advent of
remotely controlled and MASS, new sensor
capabilities are now being considered that hopefully
may be applied to both staffed and autonomous
ships. Several of these technologies extend the
functionality of existing systems by providing new
features, while others provide entirely new abilities
that have not been possible in the past. Further, the
integration of shipboard sensor data with external

data and information resources available from space-
based sensors and broadband communication
channels provide the fundamental building blocks for
cooperative decision making between vessels and
shoreside operators, and locally between vessels
using a wide area network (WAN) that is established
amongst the vessels themselves.

Many such technologies are illustrated in Table 1.
A discussion of their characteristics, the types of data
they can produce and their application to enhance
vessel situational awareness is provided in the
paragraphs that follow.

3.1.1 Surface Sensors

Augmentation of present IMO-mandated vessel
environmental sensor systems with further capability
is essential to achieve situational awareness for MASS
and to ensure proper supervision and traceability of
decision making. These sensor systems can expand
upon existing capabilities as well as provide new
capabilities not presently available which, through the
fusion of diverse data sources, can provide
unprecedented levels of vessel situational awareness.
Examples of shipboard surface sensing systems that
can provide new and redundant precision navigation,
timing, vision and acoustic capabilities include:

— Inertial Navigation Systems (INS)

— Laser Imaging (LiDAR)

— Millimeter Radar (mmRADAR)

— Video and Infrared (IR) Cameras, and
— Microphones.

Supplemental capability at and above sea level can
be achieved using Unmanned Aerial Vehicles (UAVs)
equipped with similar sensors to extend the vessel’s
vision. A basic complement of weather instruments
integrated into the overall vessel sensor fusion
architecture can provide real time data on wind speed
and direction, temperature, barometric pressure,
humidity and sea temperature that is vital for
onboard reasoning capabilities to detect and
compensate for the effects of wind, currents and other
phenomena on MASS throughout the voyage.

Specific attention is given to ATON such as
landmarks, buoys and other devices or systems
external to vessels designed and operated to enhance
the safe and efficient navigation of vessels and/or
vessel traffic.[IALA 2014] Vision sensors on board an
autonomous vessel must be capable of imaging
ATON with sufficient resolution to detect their
characteristics, make a positive identification and
determine their position through the use of GNSS and
ECDIS. Visual sensors may be supplemented with
radar and forward looking navigation sonar to
confirm ATON positioning on ECDIS with real time
observations. ATON transmitted using AIS (AIS-
ATON) may be co-located with physical ATON and
viewable on AIS receivers on board the vessel provide
another means for determining position. Virtual
ATON (VATON) that require no physical
infrastructure can also aid in determining position
through coordinated use with GNSS, ECDIS and the
vessel echosounder used to provide navigation
through contour tracking along the seabed.[Wright
and Baldauf, 2016] VATON may be placed at
locations where physical and AIS-ATON are not
possible due to harsh environmental conditions
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and/or remote location. Note that both AIS-ATON
and VATON also adhere to the IALA definition in
that they are external to the vessel. However, unlike
physical ATON reliance upon the visible spectrum,
AIS-ATON and VATON rely upon radio and sonar
signals external to the vessel that are present in the
electromagnetic spectrum.

3.1.2 Subsea Sensors

Seafarers develop skills and techniques over years
of experience to assess changes to the environment
which can indicate hazardous sea states and bottom
conditions that compromise safety of navigation.
Visual clues include changes in sea color during an
approach towards a shoal, water temperature change,
and breaking waves or areas of calm amongst rough
seas without obvious cause. Without anything more
than an echosounder to provide direct information of
the depth of water directly blow the keel, seafarers
today are expected to operate using second hand
information of the depths, hazards and obstructions
along their routes of transit provided by navigation
charts that may contain obsolete survey data that is
years, decades or even centuries old.

Remote and autonomous vessel operations must
compensate for lack of human knowledge and
expertise as well as deficient charts by providing
sensor capabilities to directly assess bottom
configurations and conditions in real time. Examples
of shipboard subsurface sensing systems to provide
new and redundant precision navigation and vision
capabilities include echosounders and sidescan sonar,
either separately or integrated together in one unit, to
provide terrain tracking capabilities and high
resolution imaging of seabed landmarks to aid in
navigation.[Wright and Baldauf, 2016a] Navigation
sonar with forward looking capabilities can provide

high-resolution bathymetry that may be compared to
electronic navigation charts (ENCs) displayed on
ECDIS for backup navigation, detection of hazards to
navigation and obstacles, and avoidance of large
marine mammals.[Wright and Russell. 2017] These
data are also sufficient to crowdsource bathymetry for
navigation chart development.[FarSounder 2018]
Also, much like UAVs, the use of Unmanned
Underwater Vehicles (UUVs) can extend MASS vision
ahead of and in the local vicinity of the vessel below
the waterline.

3.2 Space-based Sensors

As of 2018 there were approximately 4,600 satellites in
Earth orbit, of which nearly 2,000 were
operational.[UNOOSA 2018] One report shows the
growth in satellite launches increasing three-fold over
the next decade with 3,323 satellites with a mass over
50 kg. launched and to be launched between 2018-
2027, compared to 1,019 satellites that were launched
between 2008-2017.[Satnews 2019] Many of these
satellites, when supplemented with terrestrial signals,
can provide precise positioning and timing
information with up to lem accuracy as part of the
GNSS. Many other satellites are used in maritime
operations to  gather  meteorological  and
oceanographic (METOC) and terrestrial imaging.
However, much of the increase in satellite launches
represent a new generation of small satellites sent to
low earth orbit to create constellations of thousands
that will provide ubiquitous global broadband access.
This trend has already been noted with the
announcement by Inmarsat that their worldwide Fleet
Xpress service launched in March 2016 had by early
2017 passed the 10,000 ship milestone.[gCaptain 2017]

Table 1. Sensor Types and Data Classes amongst Maritime Surface, Subsea and Space Systems.

Data Domain Data Content
Sensor Type Data Class A n
Surface Systems (Shipboard) Pixel Time Freq. Unigue ID Ground Track| Speed Other
Aids to Navigation (ATON) - Physical Receiver Imagery YES NO NO YES YES NO NO light/sound
Aids to Navigation (AIS) - AlS Receiver Data NO YES NO YES YES NO NO
Aids to Navigation (VATON) - Virtual®® Data Object Data NO NO NO YES YES NO NO
Automated Identification System (AIS) Transceiver | Data/Imagery YES YES NO YES YES YES YES much data
Electronic Chart Display Info System (ECDIS) Data Object Data YES YES YES NO YES YES NO much data
Inertial Navigatianc Instrument Data NO YES YES NO YES YES YES
Laser Imaging {LIDAR:IC Instrument Imagery YES YES NO NO YES YES YES
Marine Radar (X/S band) with ARPA Transceiver | Imagery/Signal YES YES YES YES YES YES YES
millimeter Radar® Transceiver | Imagery/Signal YES YES YES NO YES NO YES
Visual tvideaj{ Receiver Imagery YES YES YES Indirect YES Indirect Indirect | much data
Infrared (IR) Receiver Imagery YES YES NO Indirect YES Indirect Indirect | much data
Audio (sound) Receiver Signal NO YES YES Indirect YES Indirect Indirect
Unmanned Aerial Vehicle (AUV]® Receiver Imagery YES YES YES Indirect YES Indirect Indirect | much data
Subsea Systems (Shipboard)
Echosounder Transceiver | Imagery/Signal | Some YES YES NO YES YES NO bottom
Navigation Sonar® Transceiver | Imagery/Signal YES YES YES Indirect YES Indirect Indirect | bathymetry
Side Scan Sonar® Transceiver | Imagery/Signal YES YES YES Indirect YES Indirect Indirect | water column
Unmanned Underwater Vehicle (UUV)© Receiver Imagery YES YES YES Indirect YES Indirect Indirect | much data
Space Systems (Remote)
Automatic ldentification System 1AI5}C Receiver Data/Imagery YES YES NO YES YES YES YES much data
Global Navigation Satellite System (GNSS) Receiver Data YES YES YES n/a YES YES YES much data
Meteorological and Ocenographic (METOC) Receiver Data/Imagery YES NO NO nfa indirect NO NO
Optical Imaging® (non-METOC) Receiver Imagery YES NO NO nfa indirect NO NO
Synthetic Aperature Radar ISAR:IC Receiver Imagery YES NO NO n/a indirect NO NO
Notes: A. Time and Frequency domain data to supplement imagery. B, Experimental technology not yet in use.  C. Not included in current IMO carriage requirements.
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Broadband satellite connectivity is essential for
communications to aid in the monitoring of MASS
operations, the sharing of large volumes of sensor
imagery, data and results of onboard decision making
processes; and to help the implementation of
blockchain technology and big data applications to
ensure safe and secure operations. This includes
space-based sensing of AIS, METOC imagery and
numerical datasets, and other sensors including
Synthetic Aperture Radar to aid in non-cooperative
surface feature and object detection; and Long Range
Identification and Tracking data for vessels.

3.3 Sensor Data Types and Characteristics

Three classes of data are available from maritime
sensors comprising the pixel, time and frequency
domains which represent different perspectives of the
environment.[Wright 2018] The pixel domain reflects a
translation of a spatial quantity into a pixel
representation. This occurs by capturing an image of a
scene or object directly onto picture elements, or
pixels, each of which contains an impression of the
qualities of a small portion of the overall image. The
original scene or object is reconstructed by means of
reproducing the pixel impressions onto a display.
This is the case for digital and infrared cameras and
other visual sensors. Changes in imagery that occur as
a function of time are reflected in the time domain.
Different mathematical and statistical functions can be
applied to pixel and time domain representations to
extract data and correlate information regarding
image content. Direct to pixel domain imagery is
limited based upon the size and resolution of the
sensor and can be enhanced wusing optical
magnification and greater numbers of smaller pixels,
as well as through the use of image filtering and
software analytics.

Radar, sonar and LiDAR images are created using
an entirely different process involving one or more
transducers (antennas) that transmit and/or receive
signals. These signals are subsequently converted into
different domain representations. An example for
radar is provided in Figure 2 where received
waveforms are analyzed in the frequency and time
domains (b,c) and processed to create a pixel domain
representation (a).

Highly complex waveforms across many
frequencies are projected onto a scene which are then
modified through reflection and absorption based
upon the physical and electrical characteristics of the
objects within the scene. A portion of the transmitted
signals are reflected back to and received by the
transducer which are analyzed as a function of
changes that occur over time as well as changes
detected in the frequency of the signal. Analysis of
time and frequency domain signals is performed to
acquire the information necessary to subsequently
create a pixel domain image for display in the
manners customary to radar, sonar and LiDAR.

While this indirect approach has proven to be
highly accurate and reliable, it can result in a great
deal of variability in how the targets and scene are
displayed to the user based upon signal resolution
and manufacturer user interface design preferences. A
target may be represented as a “blip” on a radar

screen and navigation sonar can paint a 3D surface
model of bottom terrain, while LiDAR systems can
display a highly accurate model of the terrain and
quayside environment.

a). Pixel Domain Representation of Processed Wavetorms.
(b). Radar Charp Wa".'efonn Shou.‘ina Ch.ange n Frequency.
» LRty

Figure 2. Chirp Waveform Variation over Time, with
Resulting Pixel Domain Representation of the Local
Environment.

Unlike imaging sensors, information contained
within the received signal in the time and frequency
domains are used to create the resulting pixel domain
image based upon the properties of the waveforms
being transmitted, the gain and resolution of the
transducer elements, the sensitivity of the receiver
and the capabilities of the software to analyze the
reflected signals. The ability to actively interrogate
targets using a wide range of waveforms provides
greater flexibility to analyze their reflected signal
properties across all data classes. Dynamic adjustment
of waveform signal characteristics in real time based
upon target properties and greater capabilities in
analyzing time and frequency domain datasets
continue to result in the retrieval of much greater
information content than was previously possible.
Recent examples in the case of sonar data include the
acquisition of swath bathymetry from navigation
sonar and other scientific data from high resolution
side scan sonar imagery.[FarSounder 2018, Wright
2017]. Similar advances have also occurred in other
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maritime applications that include improvements in
solid state Doppler radars.

4 EXPERIMENT PARAMETERS

Experiments performed using a combination of
machine learning and deep learning Al techniques
resulted in the acquisition, assessment and
characterization of pixel, time and frequency domain
representations of several different types of sensor
data to enhance situational awareness for MASS
operations. Specific examples illustrate the detection,
identification and correlation of other ship and small
vessel traffic and ATON to support safe navigation
along a well surveyed route according to modern
standards of navigation. Efforts included the fusion of
shipboard sensor data with information contained
within navigation charts, local notices to mariners,
tide and currents, and other information applicable to
the voyages. The scope of experiments performed as
part of continuing research was limited to a subset of
the complete vessel sensor suite needed to develop,
refine and evaluate shipboard data acquisition
methods, data analytics and resulting information
processes for autonomous navigation in preparation
for future full scale implementation on a research
vessel test bed.

4.1 Experimental Setting and Conditions

The location of these experiments is in the Mid-
Atlantic region on the east coast of the United States
within the Chesapeake Bay and its tributaries near
Annapolis, Maryland. This area is frequented by
cargo, freighter, passenger ship, special craft and
other large vessels in transit to and from the Atlantic
Ocean and the Port of Baltimore. There are also many
small recreational vessels present in the area,
especially during the summer months.

The transit route is approximately 11 nm long
beginning between buoys 87 and 88 on the eastern
side of Chesapeake Bay 1 nm off of Kent Island,
proceeding westward with Tolly Point Shoal (buoy
1AH) to starboard and the Naval Anchorage to port
(buoy 2), then northwest up the Severn River past the
city of Annapolis and the U.S. Naval Academy to a
point ¥2 nm to the east of St. Helena Island in Little
Round Bay.[NOAA 12282] This route ranges in depth
from 31 meters in the east to 5 meters in the west,
with an average depth of 8 meters along the final 9
nm of the route. Along the route are 26 buoys and
fixed ATON, two bridges and several prominent
landmarks in terms of buildings, domes and natural
features that serve as ATON.

4.2 Vessel and Sensor Configurations

Participating in these experiments serving as a test
bed for sensor integration and fusion is a 10-meter
research vessel with 1-meter draft equipped with the
following sensors:

— Furuno GP-37 WAAS/DGPS receiver,

— Furuno 1954C 4ft. 48 rpm radar with ARPA,

— Furuno GD-1920C color video plotter,
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— ICOM MA-500T class B AIS,

— EchoPilot 3D forward looking sonar,

— Lowrance HDS5 echosounder/fish finder,

— FLIR MD-625 thermal imaging camera, and

— Hikivision 8MP ultra low light imaging camera.

Data communications are accomplished under the
NMEA 0183 data bus architecture with direct image
capture to video data recorder, all under the control of
a Dell Inspiron quad core laptop, 2.3 GHz with
NVidia GT 650M GPU, 8GB RAM, 1TB hard drive.

4.3 Reasoning Systems

A combination of machine learning and Al techniques
were used to acquire, assess and characterize pixel
domain imagery of vessels and ATON including
buoys, bridges and prominent landmarks. Directed
learning focusing on feature detection and
classification was used to train a neural network to
recognize various types of vessels and ATON. Optical
character recognition (OCR) was used to positively
identify individual buoys and fixed marks from video
and infrared imagery with a 60 degree field of view
that may be zoomed to 17 degrees for precise
identification. Radar waveforms were analyzed using
deep learning Al to help discern information beyond
that available in the pixel domain radar image. This
included analyzing changes in frequency, amplitude,
phase and/or polarization. Lacking a direct interface
to the radar system, many of these waveforms were
simulated in the performance of this experiment.
Imagery representative of basic signals and their
many possible variations along with metadata
obtained from other sensors were used in training
neural networks to distinguish between targets.

Essential to the analysis of various images and
signals is the creation of large datasets that are
representative of potential objects and waveforms.
These datasets consist of two parts, a comprehensive
dataset and a limited dataset, with the former being a
subset of the latter. The comprehensive dataset is
shared for use in supervised learning in the
development and refinement of statistical processes
and for unsupervised learning in the development of
neural network processes. It includes complete
numerical data providing imagery and description of
imagery components encompassing scale, range, units
and other factors. The limited dataset contains only
objects and waveforms and is used for unsupervised
learning during neural network development. This
training  dataset consists of thousands of
representative objects and signal waveforms of
various resolutions, frequencies, bandwidths, sample
rates and complexity.

5 EXPERIMENT RESULTS

Our initial neural network configuration consisted of
the ResNet-50 architecture with which we achieved
ATON object and signal identification rates of
between 93.22% and 97.55% accuracy rates.
Subsequent use of a Convolutional Neural Network
(CNN) resulted in enhanced results ranging from
98.34% to 99.97% accuracy. Further improvements



were achieved through adjustments to existing CNN
layers and adding new layers tailored specifically to
features and attributes associated with vessels and
ATON. Adjustments of learning rates, weight factors
and other CNN characteristics also improved training
speed and accuracy. The primary CNN architecture
for the pixel domain was an AlexNet design
consisting of 27 different layers tailored to and
adjusted for object recognition. The primary CNN
architecture for the time and frequency domains was
an AlexNet design consisting of 29 different layers
tailored to and adjusted for signal recognition in the
time and frequency domains.

All ATON along the route were detected and
identified by the CNN as being of the appropriate
type (nun, can, fixed mark, dome, building, etc.) and
having proper characteristics (red, green, numbers,
letters, etc.). ATON position correlation was made
using visual imagery, electronic navigation chart and
radar target display for all ATON within visual range,
and within sonar range using forward looking
navigation sonar as an additional sensor. Positive
identification of specific buoy or aid number occurred
for 18 of the 27 occurrences; and for two bridges, one
dome and three buildings. Positive identification
occurred for three vessels and one AIS-ATON, with
correct position correlation made using radar. Radar
waveform variations correspond to vessel sizes and
configurations were observed, along with ARPA
correlation of heading and speed vectors.

Route selection by best waters considering vessel
draft and route directness was confirmed by forward
looking navigation sonar bottom topography, with
temporary deviation from planned course necessary
for vessel avoidance on three occasions. Variation of
live echosounder depth measurements over the
tracked course was within expectations,[Wright and
Baldauf. 2016a] with notable shoaling evident on the
navigation sonar near two bars.

6 DISCUSSION

CNN performance in ATON, landmark and vessel
detection and identification was demonstrated in
combination with radar and AIS target correlation
and echosounder bottom terrain tracking over a
transit route with complex features including large
and small vessel traffic and land masses. Forward
looking navigation sonar provided ATON position
verification when they were within its effective range
of 45 to 200 meters, which changes depending upon
water depth. All ATON appear to be in their assigned
positions considering variation within their proper
watch circle due to the effect of wind and tides.

OCR was found to be an effective method for
positive ATON identification during daylight hours
and during nighttime with video, low-light and IR
sensing when buoy designations were within camera
field of view and not obscured by other vessels, heavy
rain and other factors. Positive identification was
reinforced through consistency within multiple
hundreds of video frames. The primary factor in the
failure of this method was in cases where the buoy
identification was oriented away from the camera and
not viewable due to buoy rotation.

The combination of video, IR, radar and ARPA,
and navigation sonar sensing, in decreasing levels of
resolution, provided nearly 100% detection of marine
targets relevant to the vessel’s route of transit and in
determining vessel speed adjustments and alternate
routes for collision avoidance. Significant exceptions
occurred in cases of small vessels and watercraft
demonstrating  erratic  behavior along  with
unpredictable changes in course and speed. ENC and
navigation sonar provided below the waterline
awareness of expected and actual environmental
conditions to aid in alternate route determination.

7 CONCLUSIONS

The use of CNN for visual ATON, landmark and
vessel detection and identification, when combined
with radar target correlation and navigation sonar/
echosounder bottom terrain tracking, appeared
sufficient for safe and reliable navigation under
limited experimental conditions. Consideration
should be given to ATON design enhancements that
may better facilitate machine recognition of their
characteristics and positive identification of
individual buoys. A combination of multi-sensing
modalities to achieve comprehensive situational
awareness both above and below the waterline
appeared to be effective in real-time alternative course
planning, especially in the case of shoaling conditions
not evidenced on the ENC.

The use of multiple redundant sensor system to
overcome the limitations and vulnerabilities of
individual sensor systems were evaluated in
simulations performed using data recorded during
the experiment. Use of a single beam echosounder for
bottom terrain tracking provided effective to
overcome loss of GNSS capability, but was limited to
the resolution and placement of the soundings in the
ENC. High-resolution bathymetry contained within
ENC acquired using multibeam echosounders and/or
navigation sonar has already been shown to be an
effective remedy to this problem.[Wright and Baldauf.
2016b]

The results of this experiment were achieved with
sensors having limited field of view. Significant
improvements in safety and reliability can be
achieved through 360 degree detection of ATON and
potential hazards and threats, augmented with
identification using high resolution video and IR
sensing that may be directed at specific objects and
features of interest.

A significant limitation of this experiment was the
lack of direct availability of radar and sonar sensor
signal data in the time and frequency domains. Future
experiments will further explore the direct
acquisition, analysis and use of these data in
combination with other sensor modalities. This will
include integrating sensor modalities to aid in object
and threat detection with immediate route planning
and maneuvering to avoid such occurrences.

Another limitation is in the bandwidth of existing
NMEA data bus architectures to support very large
numbers of sensors in terms of both data and
imagery. This may be remedied in part by the
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proposed International =~ Marine Electronics
Association (IMEA) OneNet open standard based on
Internet Version IPv6 and the IEEE 802.3 Ethernet
Local Area Network. The results of a Radar Working
Group within OneNet developing radar messages on
the network will be of keen interest in determining its
potential in this regard.
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