Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-852f164c-38ee-4e03-beb5-8a3c6a0fc0a7

Czasopismo

Journal of Ecological Engineering

Tytuł artykułu

Impact of Selected Plant Species on Enzymatic Activity of Soil Substratum on Post-Mining Heaps

Autorzy Błońska, Agnieszka  Kompała-Bąba, Agnieszka  Sierka, Edyta  Besenyei, Lynn  Magurno, Franco  Frydecka, Kinga  Bierza, Wojciech  Woźniak, Gabriela 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The natural mineral resources (hard coal, sands, dolomites, lead and zinc ores) found in the Silesia and the excavation of them led to significant transformation or even degradation of the environment. The landscape of Upper Silesia was dominated by heaps created as a result of the accumulation of post-mining coal waste. These postindustrial sites are characterised by difficult conditions for the development of plant communities. Nevertheless, the heaps are spontaneously overgrowing and over time, a separate ecosystem can be observed (for heaps). The article analyzes the enzymatic activity of the substrate in relation to the selected dominant grass (Monocots) and herbaceous (Dicots) plant species. The aim of this study was to compare the activity of particular enzymes in soil substratum of the vegetation patches dominated by grass and herbaceous plants.
Słowa kluczowe
EN carboniferous waste rock dumping grounds   mining heap   enzymatic activities   herbaceous plants   grasses  
Wydawca Polskie Towarzystwo Inżynierii Ekologicznej
Czasopismo Journal of Ecological Engineering
Rocznik 2019
Tom Vol. 20, nr 1
Strony 138--144
Opis fizyczny Bibliogr. 43 poz., rys.
Twórcy
autor Błońska, Agnieszka
  • Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice; Poland
autor Kompała-Bąba, Agnieszka
  • Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice; Poland
autor Sierka, Edyta
  • Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice; Poland
autor Besenyei, Lynn
  • Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, United Kingdom
autor Magurno, Franco
  • Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice; Poland
autor Frydecka, Kinga
  • Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice; Poland
autor Bierza, Wojciech
  • Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice; Poland, wojciech.bierza@us.edu.pl
autor Woźniak, Gabriela
  • Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice; Poland
Bibliografia
1. Baryła R. 2005. The effect of irrigation with treated municipal sewage on the species composition of meadow mixtures. Łąkarstwo w Polsce, 8, 19–26 (in Polish).
2. Błońska A., Chmura D., Molenda T. 2013. The ecological conditions of the occurrence of drosera rotundifolia in man-made habitats. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 1, 947–954.
3. Bradshaw A.D. 1993. Restoration ecology as a science. Restoration Ecology, 1, 71–73.
4. Bradshaw A.D. 2000. The use of natural processes in reclamation–advantages and difficulties. Landscape and Urban Planning, 51, 89–100.
5. Cabała J., Teper E., Teper L., Małkowski E., Rostański A. 2004. Mineral composition in rhizosphere of plants grown in the vicinity of a Zn-Pb ore flotation tailings pond. Acta Biologica Cracoviensia, Series Botanica, 46, 65–74.
6. Caravaca F., Alguacil M.M., Azcón R., Dıaz G., Roldán A. 2004. Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L. Applied Soil Ecology, 25(2), 169–180.
7. Chmura D., Błońska A., Molenda T. 2013. Hydrographic properties and vegetation differentiation in selected anthropogenic wetlands. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 1, 555–562.
8. Chmura D., Molenda T., Błońska A., Woźniak G. 2011. Sites of Leachate Inflows on Coalmine Heaps as Refuges of Rare Mountainous Species. Polish Journal of Environmental Studies, 20(3), 551–557.
9. Cohn V. J., Rostański A., Tokarska-Guzik B., Trueman I.C., Woźniak G. 2001. The flora and vegetation of and old Solvay process tip in Jaworzno (Upper Silesia, Poland). Acta Societatis Botanicorum Poloniae, 70, 47–60.
10. Das S.K., Varma A. 2010. Role of enzymes in maintaining soil health. In: Shukla, G., Varma, A. [Eds.]. Soil enzymology. Springer Berlin Heidelberg. pp. 25–42.
11. Dick R.P. 1997. Soil enzyme activities as integrative indicators of soil health. In: Pankhurst C., Doube B.M., Gupta V.V.S.R. [Eds.]. Biological indicators of soil health. CAB International. pp. 121–156.
12. Eisenhauer N., Dobies T., Cesarz S., Hobbie S.E., Meyer R.J., Worm K., Reich P.B., 2013. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences, 110(17), 6889–6894.
13. Eisenhauer N., Lanoue A., Strecker T., Scheu S., Steinauer K., Thakur M.P., Mommer L., 2017. Root biomass and exudates link plant diveristy with soil bacterial and fungal biomass. Scientific Reports, 7, 44641.
14. Frouz J., Prach K., Pižla V., Háněla L., Starýa J., Tajovskýa K., Maternad J., Balíka J., Kalčíka J., Řehounkováb K. 2008. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44, 109–121.
15. Haynes R.J. 1999. Size and activity of the soil microbial biomass under grass and arable management. Biology and Fertility of Soils, 30(3), 210–216.
16. Hoffmann E. 1968. Phosphatases in the enzyme system of cultivated soils (in Germany) and possibilities of determining their activity. Zeitschrift für Pflanzenernährung und Bodenkunde, 118, 153–160.
17. Kompała-Bąba A., Bąba W. 2013. The spontaneous succession in a sand-pit – the role of life history traits and species habitat preferences. Polish Journal of Ecology, 61, 13–22.
18. Kondracki J. 2002. Regional geography of Poland. PWN, Warsaw (in Polish).
19. Koper J., Piotrowska A. 1996. Enzymatic activity of podzolic soil depending on the cultivation of plants in crop rotation and monoculture. Roczniki Gleboznawcze, 3, 89–100 (in Polish).
20. Koperski T., Cukiernik Z., Wiśniewski J. 2008. Aspects and conditions related to the transformation of mining waste into products [In] Waste management – current status and planned changes. Nowe zasady gospodarowania odpadami wydobywczymi. Materiały Warsztatów, Katowice (in Polish).
21. Markowicz A., Woźniak G., Borymski S., Piotrowska-Seget Z., Chmura D. 2015. Links in the functional diversity between soil microorganisms and plant communities during natural succession in coal mine spoil heaps. Ecological Research, 30(6), 1005–1014.
22. Molenda T., Błonska A., Chmura D. 2013. Hydrochemical diversity of antropogenic wetlands developed in disused sandpits. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 1, 547–553.
23. Myśków W. 1981. Attempts to use microbial activity indicators to assess soil fertility. Postępy Mikrobiologii, 20 (3/4), 173–192 (in Polish).
24. Myśków W., Stachyra A., Zięba S., Masiak D. 1996. Soil biological activity as an indicator of its fertility. Roczniki Gleboznawcze, 47, 89–99 (in Polish).
25. Nicia P., Bejger R., Błońska A., Zadrozny P., Gawlik A. 2014. Characteristics of the habitat conditions of ash-alder carr (Fraxinio-Alnetum) in the Błedowskie Swamp. Journal of Food, Agriculture and Environment, 12(2), 1227–1232.
26. Oades J.M. 1984. Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil, 76(1–3), 319–337.
27. Piekarska-Stachowiak A., Szary M., Ziemer B., Besenyei L., Woźniak G. 2014. An application of the plant functional group concept to restoration practice on coal mine spoil heaps. Ecological Research, 29(5), 843–853.
28. Prach K. 2003. Spontaneous succession in Central-European man-made habitats: what information can be used in restoration practice? Applied Vegetation Science, 6, 125–129.
29. Probierz K., Gawor Ł., Jonczy I., Marcisz M. 2017. Valorisation of post-mining waste dumping grounds from the mines of Katowicki Holding Węglowy S.A. Gospodarka surowcami mineralnymi – Mineral Resources Management, 33(1), 35–50 (in Polish).
30. Rahmonov O. 2009. The chemical composition of plant litter of black locust (Robinia pseudoacacia L.) and its ecological role in sandy ecosystems. Acta Ecologica Sinica, 29, 237–243.
31. Rahmonov O., Rahmanova M., Snytko V.A., Szczypel T. 2011. Anthropogenic disturbance to vegetation on the poligon-transect in the Kulikalon depression (Tajikistan) Geography and Natural Resources, 32, 386–393.
32. Rostański A., Woźniak G. 2007. Grasses (Poaceae) on post-industrial waste sites in course of spontaneous succession. Fragmenta Floristica et Geobotanica, 9, 31–42.
33. Różkowski A., Różkowski K., 2011. The impact of coal mining activities on the formation of the water environment of the Upper Silesian Coal Basin in the long-term. Biuletyn Państwowego Instytutu Geologicznego, 445, 583–592 (in Polish).
34. Russel R.S., Wyczółkowski A.J. 2005. Methods for determining enzyme activity in soil. Acta Agrophysica Rozprawy i Monografie. 3 (in Polish).
35. Schinner F., Öhlinger R., Kandeler E., Margesin R. 1996. Methods in soil biology, Springer-Verlag, Berlin, Heidelberg, New York, pp. 241–243.
36. Šnajdr J., Dobiášová P., Urbanová M., Petránková M., Cajthaml T., Frouz J., Baldrian P. 2013. Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biology and Biochemistry, 56, 105–115.
37. Szczepańska J., Twardowska I. 1999. Distribution and environmental impast of coal-mining wastes in Upper Silesia. Poland Environment and Geology, 38(3), 249–258.
38. Urbanova M., Kopecky J., Valaskova V., Saganova-Mareckova M., Elhottova D., Kyselkova M., Moenne-Loccoz Y., Baldrian P. 2011. Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiology Ecology, 78, 59–69.
39. Ushio M., Kitayama K., Balser T.C. 2010. Tree species effects on soil enzyme activities through effects on soil physicochemical and microbial properties in a tropical montane forest on Mt. Kinabalu, Borneo. Pedobiologia, 53(4), 227–233.
40. Waldrop M.P., Balser T.C., Firestone M.K. 2000. Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry, 32(13), 1837–1846.
41. Woźniak G., Pasierbiński A., Rostański A. 2003. The diversity of spontaneous woodland vegetation on coals mine heaps of Upper-Silesian industrial region. Archives of Environmental Protection, 29, 93–105.
42. Woźniak G. 2010. Diversity of vegetation on coal-mine heaps of the Upper Silesia (Poland). In: Margesin R, Schinner F (Eds) Manual of soil analysis–monitoring and assessing soil bioremediation. Szafer Institute of Botany. Polish Academy of Science, Kraków, p 310.
43. Woźniak G., Markowicz A., Borymski S., Piotrowska-Seget Z., Chmura D., Besenyei L. 2015. The relationship between successional vascular plant assemblages and associated microbial communities on coal mine spoil heaps. Community Ecology, 16(1), 23–32.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-852f164c-38ee-4e03-beb5-8a3c6a0fc0a7
Identyfikatory
DOI 10.12911/22998993/93867