PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Event-related desynchronization/synchronization-based volitional cursor control in a two-dimensional center-out paradigm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To achieve a reliable two-dimensional control by noninvasive EEG-based brain-computer interface (BCI), users are typically required to receive long-term training to learn effective regulation of their brain rhythmic activities, and to maintain sustained attention during the operation. We proposed a two-dimensional BCI using event-related desynchronization and event-related synchronization associated with human natural behavior so that users need neither long-term training nor high mental loads to maintain concentration. In this study, we intended to further investigate the performance of the proposed BCI associated with either physical movement or motor imagery with an online two-dimensional centerout cursor control paradigm. Model adaptation method was employed for better decoding of human movement intention from EEG activities. The results demonstrated an effective center-out cursor control: as high as 77.1% during online control with physical movement and 57.3% with motor imagery. It suggests that two-dimensional BCI control can be achieved without long-term training.
Rocznik
Strony
97--108
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
autor
  • Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
autor
  • University of the West of England, Bristol, UK
autor
  • Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
autor
  • Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
  • Department of Biomedical Engineering, Virginia Commonwealth University, 401 W Main Street, Room 1252, Richmond, VA 23284, USA
Bibliografia
  • [1] Bai O, Lin P, Vorbach S, Floeter M K, Hattori N and Hallett M 2008 A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior J Neural Eng 5 24-35
  • [2] Bai O, Mari Z, Vorbach S and Hallett M 2005 Asymmetric spatiotemporal patterns of eventrelated desynchronization preceding voluntary sequential finger movements: a high-resolution EEG study Clin Neurophysiol 116 1213-21
  • [3] Birbaumer N, Weber C, Neuper C, Buch E, Haapen K and Cohen L 2006 Physiological regulation of thinking: brain-computer interface (BCI) research Prog Brain Res 159 369-91
  • [4] Hjorth B 1975 An on-line transformation of EEG scalp potentials into orthogonal source derivations Electroencephalogr Clin Neurophysiol 39 526-30
  • [5] Huang D, Lin P, Fei D Y, Chen X and Bai O 2009 Decoding human motor activity from EEG singletrials for a discrete two-dimensional cursor control J Neural Eng 6 046005
  • [6] Jasper H H and Andrews H L 1938 Electroencephalography.III. Normal differentiation of occipital and precentral regions in man Arch NeurolPsychiat 39 95-115
  • [7] Kipke D R, Shain W, Buzsaki G, Fetz E, Henderson J M, Hetke J F and Schalk G 2008 Advancedneurotechnologies for chronic neural interfaces:new horizons and clinical opportunities J Neurosci 28 11830-8
  • [8] Kubanek J, Miller K J, Ojemann J G, Wolpaw J R and Schalk G 2009 Decoding flexion of individualfingers using electrocorticographic signals in humans J Neural Eng 6 66001
  • [9] Leuthardt E C, Miller K, Anderson N R, Schalk G, Dowling J, Miller J, Moran D W and Ojemann J G 2007 Electrocorticographic frequency alteration mapping: a clinical technique for mapping the motor cortex Neurosurgery 60 260-70; discussion70-1
  • [10] Leuthardt E C, Schalk G, Wolpaw J R, Ojemann J G and Moran D W 2004 A brain-computer interface using electrocorticographic signals in humans J Neural Eng 1 63-71
  • [11] McFarland D J, Krusienski D J, Sarnacki W A and Wolpaw J R 2008 Emulation of computer mouse control with a noninvasive brain-computer interface J Neural Eng 5 101-10
  • [12] Miller K J, denNijs M, Shenoy P, Miller J W, Rao R P and Ojemann J G 2007a Real-time functionalbrain mapping using electrocorticography Neuroimage 37 504-7
  • [13] Miller K J, Leuthardt E C, Schalk G, Rao R P, Anderson N R, Moran D W, Miller J W and Ojemann J G 2007b Spectral changes in cortical surface potentials during motor movement J Neurosci 27 2424-32
  • [14] Morash V, Bai O, Furlani S, Lin P and Hallett M 2008 Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries Clin Neurophysiol 119 2570-8108 D. Huang, K. Qian, S. Oxenham, D. Fei and O. Bai
  • [15] Oldfield R C 1971 The assessment and analysis of handedness: the Edinburgh inventory Neuropsychologia 9 97-113
  • [16] Rao S M, Binder J R, Bandettini P A, Hammeke T A, Yetkin F Z, Jesmanowicz A, Lisk L M, Morris G L, Mueller W M, Estkowski L D and et al. 1993 Functional magnetic resonance imaging of complex human movements Neurology 43 2311-8
  • [17] Salenius S, Salmelin R, Neuper C, Pfurtscheller Gand Hari R 1996 Human cortical 40 Hz rhythm I closely related to EMG rhythmicity Neurosci Lett 213 75-8
  • [18] Schalk G, Kubanek J, Miller K J, Anderson N R, Leuthardt E C, Ojemann J G, Limbrick D, Moran D, Gerhardt L A and Wolpaw J R 2007 Decoding two-dimensional movement trajectories using electrocorticographic signals in humans J Neural Eng 4 264-75
  • [19] Schalk G, Leuthardt E C, Brunner P, Ojemann J G, Gerhardt L A and Wolpaw J R 2008a Real-time detection of event-related brain activity Neuroimage 43 245-9
  • [20] Schalk G, Miller K J, Anderson N R, Wilson J A, Smyth M D, Ojemann J G, Moran D W, Wolpaw J R and Leuthardt E C 2008b Two-dimensional movement control using electrocorticographic signals in humans J Neural Eng 5 75-84
  • [21] Vaughan T M, McFarland D J, Schalk G, Sarnacki W A, Krusienski D J, Sellers E W and Wolpaw J R 2006 The Wadsworth BCI Research and Development Program: at home with BCI IEEE Trans Neural Syst Rehabil Eng 14 229-33
  • [22] Wolpaw J R 2007 Brain-computer interfaces as new brain output pathways J Physiol 579 613-9
  • [23] Wolpaw J R, Birbaumer N, Heetderks W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrano L A, Robinson C J and Vaughan T M 2000 Brain-computer interface technology: a review ofthe first international meeting IEEE Trans Rehabil Eng 8 164-73
  • [24] Wolpaw J R, Birbaumer N, McFarland D J, Pfurtscheller G and Vaughan T M 2002 Braincomputer interfaces for communication and control Clin Neurophysiol 113 767-91
  • [25] Wolpaw J R and McFarland D J 2004 Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans Proc Natl Acad Sci U S A 101 17849-54
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-852cd427-cf4f-4d61-801c-227c16a2af26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.