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Abstract

To achieve a reliable two-dimensional control by noninvasive EEG-based brain-computer
interface (BCI), users are typically required to receive long-term training to learn effective
regulation of their brain rhythmic activities, and to maintain sustained attention during the
operation. We proposed a two-dimensional BCI using event-related desynchronization
and event-related synchronization associated with human natural behavior so that users
need neither long-term training nor high mental loads to maintain concentration. In this
study, we intended to further investigate the performance of the proposed BCI associated
with either physical movement or motor imagery with an online two-dimensional center-
out cursor control paradigm. Model adaptation method was employed for better decoding
of human movement intention from EEG activities. The results demonstrated an effective
center-out cursor control: as high as 77.1% during online control with physical movement
and 57.3% with motor imagery. It suggests that two-dimensional BCI control can be
achieved without long-term training.

1 Introduction

The brain-computer interface (BCI) can decode
people’s intention bypassing peripheral nerves and
muscles to achieve direct control of external devices
(Wolpaw, 2007). It provides a new communica-
tion pathway to the people with severe motor dis-
abilities. Performance of the BCI system is highly
depended on the signal-to-noise ratio (SNR) of the
brain signal.

Invasive and semi-invasive BCIs may provide
better SNR than non-invasive BCI as invasive BCI
detects signal by implanting electrodes into the mo-

tor cortex such as local field potential recorded
from individual or small population of motor neu-
rons (Kubanek et al., 2009), and semi-invasive BCI
pastes electrodes under dura (ECoG) (Leuthardt et
al., 2004; Miller et al., 2007b; Schalk et al., 2007;
Leuthardt et al., 2007; Miller et al., 2007a; Schalk
et al., 2008a). However, the widespread of clini-
cal use of invasive or semi-invasive BCIs in human
being is impeded by the high risk of surgical pro-
cedures and the problems in achieving robust and
stable long-term recordings (Kipke et al., 2008).

Electroencephalography (EEG) is the most
commonly used non-invasive method, which de-
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tects signal from the scalp (Wolpaw et al., 2002;
Wolpaw and McFarland, 2004; McFarland et al.,
2008; Bai et al., 2008; Huang et al., 2009; Morash
et al., 2008). The critical challenge of EEG-based
BCI is how to keep good and robust performance
while the variation of EEG signal is large. Studies
in recent years show that EEG-based BCI has great
potential in achieving two-dimensional or multi-
dimensional cursor control (McFarland et al., 2008;
Wolpaw and McFarland, 2004). However, these
systems usually require long-term training in reg-
ulating brain rhythm, and the performance in long-
term use is often not robust (Kubanek et al., 2009).

The discovery of event-related desynchroniza-
tion (ERD) or power decrease and event-related
synchronization (ERS) or power increase casts a
light on the development of brain-computer inter-
face (Birbaumer et al., 2006). Recent studies devel-
oped a paradigm to achieve two-dimensional cur-
sor control using ERD/ERS method, directly decod-
ing movement intention without long-term training
(Bai et al., 2008; Huang et al., 2009). Human limbs
are controlled by contralateral brain hemispheres,
which has been confirmed by many studies (Bai et
al., 2005; Rao et al., 1993; Salenius et al., 1996).
During physical and motor imagery of right and left
hand movements, beta band brain activation (15-30
Hz) ERD occurs predominantly over the contralat-
eral left and right motor areas. The post movement
ERS associated with ceasing to move, can also be
found over the contralateral motor areas. There-
fore, reliably decoding the movement intention of
right and left hand, which are associated with differ-
ent spatiotemporal patterns of ERD and ERS may
potentially provide four reliable features for a two-
dimensional control, e.g. left-hand ERD to com-
mand move to the left, left-hand ERS to command
move up, right-hand ERD to command move to the
right, and right-hand ERS to command move down.

In this study, we further investigated the per-
formance of the BCI, which was done online
using a two-dimensional center-out cursor con-
trol paradigm with an improved model adaptation
method for better decoding of human movement in-
tention from EEG activities.

2 Method

2.1 Human subjects

Three healthy subjects: a female at age 24 (S1),
a male at age 26 (S2) and a female at age 25 (??)
were the BCI users in this study. They were right-
handed according to the Edinburgh inventory (Old-
field, 1971), and they had no prior BCI experience.
The protocol was approved by the Institutional Re-
view Board, and each user gave the informed con-
sent before the study.

2.2 Study protocol

Each subject participated in two parts of study
in a single visit: motor execution with physical
movement and motor imagery. Each part consisted
of a first 6-min calibration period, containing 48 tri-
als, followed by five to six 3-min blocks of online
cursor control separated by 1-min breaks, 16 trials
each block. Subjects finished 128 to 144 trials for
each part and it took around 2.5 hours to complete
both parts in a single visit.

During BCI operation, subjects were seated in
a chair facing a computer screen, which was place
about 1.5 meters in front of the subject. EEG ac-
tivity was recorded from 27 (tin) surface electrodes
(F3, F7, FC3, C1, C3, C5, T7, CP3, P3, P7, F4, F8,
FC4, C2, C4, C6, T8, CP4, P4, P8, FPZ, FZ, FCZ,
CZ, CPZ, PZ and OZ) (shown in figure 1) attached
on an elastic cap (Electro-Cap International, Inc.,
Eaton, OH, U.S.A.) according to the international
10-20 system (Jasper and Andrews, 1938), with ref-
erence from the right ear and ground from the fore-
head. Surface electromyography (EMG) and elec-
trooculogram (EOG) signals were also recorded for
monitoring the muscle and eye movements. For
surface EMG, two electrodes were taped over the
right and left wrist extensors. Electrodes for bipo-
lar EOG were pasted above left eye and below right
eye. Subjects were instructed to keep all muscles re-
laxed and have the forearms semi-flexed, supported
by a pillow. They were also instructed to avoid
body movement during the BCI operation. The in-
vestigator was monitoring the EMG activity con-
tinuously; once EMG activity was observed dur-
ing motor imagery, subjects were reminded to re-
lax the muscles. Trials with EMG contamination
were excluded based on visual inspection for fur-
ther offline ERD and ERS analysis and classifica-
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tion. Signals from all the channels were ampli-
fied (g.tec GmgH, placeCitySchiedlberg, country-
regionAustria), filtered (0.1-100 Hz) and digitized
(sampling frequency was 250 Hz). The digital sig-
nal was then sent to a HP PC workstation and
was online processed using a home-made MAT-
LAB (MathWorks, Natick, MA) Toolbox: brain-
computer interface to virtual reality or BCI2VR
(Bai et al., 2008). The BCI2VR programs provided
both the visual stimulus for the calibration and the
two-dimensional cursor-control testing, as well as
online processing of the EEG signal.

2.3 Volitional cursor control in a two-
dimensional center-out paradigm

Similar experimental paradigms for calibration
and two-dimensional center-out cursor control were
adopted and modified to perform an improved con-
trol in this study. Figure 2 was used to demonstrate
the procedures for both calibration and online test.

2.3.1 Calibration

A trial began when a target (in red) appeared
at one of the four locations on the periphery of the
screen, together with three non-target objects (in
green) on the other three sides (Fig. 2a). A target lo-
cation was pseudo-randomized (i.e. each occurred
the same times in one block). In both parts (physi-
cal movement and motor imagery), there were four
hint words in the task paradigm (a), ‘RYes’, ‘RNo’,
‘LYes’, and ‘LNo’ (‘R’ indicating right hand task,
and ‘L’ for left hand task) on the four directions of
the central cursor, which was set in green initially.
Subjects were instructed to begin real or imagined
repetitive wrist extensions of the right arm, if the
target was on the direction of ‘RYes’ or ‘RNo’; if
the target was on the direction of ‘LYes’ or ‘LNo’,
they performed real or imagined repetitive wrist ex-
tensions of the left arm. After a period of 1s, the
central cursor changed color to blue (b), when the
subject was instructed to continue real or imagined
movement with the ‘Yes’ case or abruptly relax and
stop moving with the ‘No’ case. After displaying
for a period of 1.5s, the configuration disappeared,
indicating that subject needed to stop the task, and
the screen was blank for 4.5s (f). Next trial began
from (a).

2.3.2 Two-dimensional center-out cursor con-
trol paradigm

Sustained movement is usually associated with
a persistent event-related desynchronization (ERD),
while cessation of movement is followed by a beta
band rebound above baseline power levels, i.e.
event-related synchronization (ERS). Since we in-
tended to discriminate ERD from ERS, which oc-
curs only after cessation of movement in the T2
window, we only extracted EEG signal in the T2
time window to classify ‘Yes’ or ‘No’ intention de-
termined from ERD and ERS. Successfully classi-
fying the four kinds of movements in motor execu-
tion or motor imagery was the basis of realization
of 2D control.

In a 2D plane, the cursor can move to four di-
rections: up, down, right and left, each of which
was linked to one of the four movements. We in-
tended to decode movement intentions to determine
the subject’s control of cursor direction. As human
movement intention is associated with spatial ERD
and ERS (on either left or right hemisphere), we
applied the detection strategy as shown in Figure
3. For example, if the subject wanted to move the
cursor to the right, he needed to perform the ‘RYes’
task, either physical or motor imagery to develop an
ERD pattern on the left hemisphere. When the as-
sociated ERD on the left hemisphere was detected
in the T2 time window, the cursor would move to
the right direction; similar for controls on the other
directions.

The initial calibration step determined the opti-
mal frequency band and spatial channels. The se-
lected features and generated model were then used
to test an online two-dimensional center-out cursor
control. Similar to what the subjects did in cali-
bration step, they performed real or imagined hand
movement in T1 window (figure 2a), and in T2 win-
dow (b) continued in if ‘Yes’ case or stopped if ‘No’
case. Until the hint words disappeared (c), they
stopped the task. Cursor moved to the classified di-
rection in 2s with a constant speed (d). If the tar-
get was hit, it flashed for 1s as a reward (e); if the
cursor failed to reach the target, the configuration
simply disappeared. The screen went blank for 1.5s
and then next trial began.



100 D. Huang, K. Qian, S. Oxenham, D. Fei and O. Bai

2.4 Signal processing method and the
model adaptation

Figure 4 illustrates the procedures for online
calibration and online test using two-dimensional
center-out paradigm. In calibration step, data
was first spatially filtered using surface Laplacian
derivation (SLD), which referenced the EEG sig-
nal from each electrode to the averaged poten-
tials from the nearby four orthogonal electrodes
(Hjorth, 1975), in order to improve the localiza-
tion of sources and thus enhanced the EEG feature
of local synchrony, i.e., frequency power changes,
making the spatial difference due to different hand
movements more distinguishable. And then data
was temporally filtered by estimation of the power
spectral density. Through offline neurophysiologi-
cal analysis, 0.5s-1.5s after T2 window started was
selected to obtain strongest ERD/ERS. We applied
Welch method with Hamming window, and kept
the frequency resolution 4 Hz, the same as previ-
ous study, with 50% overlap of the segments. For
either physical movement or motor imagery, there
were 48 trials for training data, making the data
pool. Parameters and features were determined
from the training data, for decoding the movement
intention in online test. We performed empirical
feature reduction by reducing the channel number
from 29 to 14, which covered the area of left and
right motor cortex; restricting the frequency band
from 8 to 32 Hz, which included alpha and beta
bands. Since the previous study (Huang et al., 2009)
showed that genetic algorithm based Mahalanobis
linear discrimination classifier (GA-MLD) and de-
cision tree classifier (DTC) gave similar classifica-
tion performances in this two-dimensional control,
we used both of them in the current study to gen-
erate models, and during the online games, each
time we selected the one giving the higher result
for classification in the next trial. Specifically, in
online test, either physical movement or motor im-
agery, there were 5 or 6 blocks, each containing 16
trials. The new data also went through spatial fil-
tering, temporal filtering, channels and frequency
bands restriction. In classification, either GA-MLD
or DTC would be used to classify the movement in-
tention. The cursor was then moved to the classified
direction. The trial was then combined with the old
trials, keeping the data pool updated. New models
would be generated using MLD and DTC, the one

with higher accuracy would be used as the classi-
fier in next trial. If the block was completed, the
features would be re-selected by genetic algorithm,
and new models were generated by GA-MLD and
DTC. Next block began with the same procedures.

The procedures above in the online test illus-
trate how the adaptive algorithm was applied. The
control accuracy was determined by the model,
which was generated initially by GA-MLD and
DTC in the calibration step. From then on, after
each trial, the model was automatically adapted on
the basis of past trials to optimize, for subsequent
trials, the translation of subject’s movement inten-
tion into cursor movement control.

2.5 Offline neurophysiological analysis

To investigate the neurophysiology following
the tasks of ‘Yes’ and ‘No’ using the right or left
hands, we epoched the data from -1s to 4s with re-
spect to the first cue onset. Epochs with artifacts
were rejected. ERD and ERS were calculated for
each case. Epochs were linearly de-trended and di-
vided into 0.256s segments. The power spectrum of
each segment was calculated using FFT with Ham-
ming window resulting in a bandwidth of about 4
Hz. ERD and ERS were obtained by averaging the
log power spectrum across epochs and baseline cor-
rected with respect to -1s to 0s.

3 Result

3.1 Neurophysiological analysis of
ERD/ERS

For each subject, all the calibration data and
testing data were included to do the spatiotempo-
ral analysis. The study differentiated the ERD and
ERS patterns in two hemispheres following hands
movement or motor imagery using the period af-
ter the ‘No’ cue onset. Figure 5 shows the time-
frequency plots, head topographies of ERD and
ERS for all the three subjects, with physical move-
ment (left half of each sub-figure) and motor im-
agery (right half of each sub-figure). For S1 and
S3, channel C3 over the left sensorimotor cortex
and C4 over the right hemisphere were selected to
illustrate the strongest ERD and ERS patterns, con-
taining each of the four situations: ‘RYes’, ‘RNo’,
‘LYes’, and ‘LNo’. For S2, channel C1 on left
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hemisphere and channel C2 on right hemisphere
were used for the same purpose. ERD was observed
from around 0.2 – 0.5s after the cue onset. For
S1 and S3, ERD centered around 15Hz (lower beta
band); for S2, ERD centered around 22Hz. ERD
was observed on both hemispheres for all the sub-
jects during physical movement, but more on one
side. ERS was observed around 20 Hz, over the
contralateral motor areas for S1 and S3, but also ap-
peared slightly ipsilateral for S2 on the central chan-
nels C2 or C1. Compared with ERD patterns, ERS
was more focal on the contralateral hemisphere.
Therefore, the ERD and ERS on either left or right
hemisphere provided four spatial patterns to detect
‘RYes’, ‘RNo’, ‘LYes’, and ‘LNo’ intentions. For
motor imagery, ERD and ERS have similar patterns
as for physical movement, although the amplitudes
were smaller. ERD and ERS patterns were not clear
to observe for S3.

3.2 Classification

Figure 6 gives out the online cursor control test
results for the three subjects, with physical move-
ment (Block 1 to Block 6) and motor imagery
(Block 1’ to Block 6’). All the subjects finished
6 blocks in physical part, containing 16 trials in
each block, with four tasks evenly assigned. Ei-
ther DTC or GA-MLD was used each time for the
intention detection, depending on which one cre-
ated a better model after model adaptation. Aver-
age online performances for each subject in phys-
ical part were 77.1%±8.54%, 70.8%±5.10%, and
57.0%±6.85%. We observed a trend that the
overall performances increased across blocks, al-
though correlation did not show significant differ-
ence (r=0.19, p-value=0.4468). In motor imagery
online test, S1 and S2 had 6 blocks and S3 had
5. Average online performances for each sub-
ject in motor imagery part were 57.3%±13.35%,
46.9%±8.62%, and 42.5%±5.23%. We also ob-
served a trend that the overall performances in-
creased across blocks, and the correlation showed a
significant relationship between motor imagery per-
formances and blocks (r=0.62, p-value=0.0057).

Offline analysis using 10-fold cross-validation
was done for each subject. All the calibration data
and test data (total 128-144 trials per subject per
part) were used. Table 1 listed the results, evaluated
by DTC and GA-MLD classifiers, for physical and

motor imagery parts. The two classifiers provided
similar results in each part.

4 Discussion

4.1 Center-out paradigm

In the previous study, we used a goal oriented
paradigm in the online two dimensional cursor con-
trol test, where the target randomly appeared in the
2D plane. The subject was supposed to control the
cursor moving to it and avoid being trapped by a
randomly assigned obstacle (Huang et al., 2009).
Most subjects found the paradigm interesting and
easy to learn, requiring little mental load. As we
discussed before, in motor imagery where no EMG
was involved, subjects could determine the route in
each step moving the cursor to the target by them-
selves, so, it was difficult for the computer to tell
whether the cursor really moved to the desired di-
rection without feedback, and therefore we did not
report the accuracy for motor imagery in the previ-
ous study, instead, we reported overall target reach-
ing rate. In this study, we adopted the commonly
used center-out paradigm (Wolpaw and McFarland,
2004; Schalk et al., 2008b; Vaughan et al., 2006)
to further investigate the performance of our pro-
posed BCI with motor imagery, where four tasks
were evenly assigned in each block and the calcu-
lation of control accuracy was straightforward. The
four-target center-out paradigm can be generalized
to eight or more target paradigm, which would be
more ideal for testing further improved 2D control,
for example, continuous 2D control.

4.2 Decoding rate and accuracy

Information transfer rate (ITR) in bits per
minute (bpm) has been introduced by Wolpaw et
al. to evaluate the performance of BCI system; both
control accuracy and control speed determine the
BCI performance (Wolpaw et al., 2000; Wolpaw et
al., 2002). In this study, we used the classification
accuracy given by the best subject to calculate the
ITR. For physical movement, the classification ac-
curacy was 83%, and for motor imagery 56.8%. For
a four class task, ITR was 1.34 bits per trial for
physical movement and 1.01 bits per trial for mo-
tor imagery. The cuing period T1 was set to 2.5s
before, which left enough time for subjects to pre-
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Table 1. 10-fold Cross-Validation Accuracy. DTC: decision tree classifier; GA-MLD: genetic
algorithm-based Mahalanobis linear discrimination.

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
S3 59.1 ± 5.47 63.2 ± 4.83 40.8 ± 5.73 39.7 ± 4.88
Average 70.7 ± 10.28 74.8 ± 10.33 43.9 ± 7.49 48.5 ± 8.56

pare for the movement. In current study, we short-
ened it to 1s. Although the variance was larger than
before, subjects reported good attention level, and
from the neurophysiological analysis we observed
clear ERD/ERS patterns and even shorter response
delay than before. Since in either part, the total du-
ration for T1 and T2 windows has been shortened to
2.5s, i.e. 24 trials per minute. Therefore, ITR was
32.16 bits per minute for physical movement and
24.24 bits per minute for motor imagery. Compared
with the results given in previous study (Huang et
al., 2009), ITR was greatly improved.

4.3 Decoding accuracies changing with
time

To achieve four-directional classification for
a two-dimensional control associated with human
natural behavior, the BCI in this study was expected
to show stable and robust performance without sub-
ject’s intensive training. As the results showed,
a trend could be observed that the overall per-
formance for the three subjects improved across
blocks, in either physical part or motor imagery
part. Since model adaptation was used for each
trial and the features were re-selected for each new
block, classification accuracy was supposed to in-
crease or stabilize when the tasks were done con-
sistently, although the increase may be insignifi-
cant. We expect that in further study, with the model
adaptation, the accuracy can increase or at least sta-
bilize in multiple visits, with stable performances
across blocks in each single visit. If that is the case,
the proposed BCI would be able to achieve reliable
control in both short time use and long-term use.

4.4 Spatiotemporal features of ERD and
ERS

As was expected for physical movement, we
observed clear ERD and ERS in beta band over the
contralateral motor cortex associated with the mov-
ing hand, ERD during the sustained movement and
ERS after the movement stopped. We also observed
ERD appeared on ipsilateral hemisphere and even
stronger than that on contralateral hemisphere. We
considered the reason might be that during the hand
moving, although the other hand was not moving,
the automatic urging of the movement also gener-
ated ERD activity, on the contralateral motor cortex,
which was the ipsilateral side of the moving hand.
Similar patterns appeared for motor imagery. In this
case, the discrimination between ‘RYes’ and ‘LYes’
could be difficult, since the movement of either
hand would generate ERD over both hemispheres,
especially when its variance was large. Although in
this study, genetic algorithm combined with adap-
tive method provided multiple features for the clas-
sifier, which greatly helped with the classification,
‘RYes’ and ‘LYes’ was still the most difficult pair to
distinguish compared with others. Further improve-
ment on this issue could be either adding another
feature to enhance classification or improving the
paradigm to avoid direct comparison of ‘RYes’ and
‘LYes’.
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Table 1. 10-fold Cross-Validation Accuracy. DTC: decision tree classifier; GA-MLD: genetic
algorithm-based Mahalanobis linear discrimination.

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
S3 59.1 ± 5.47 63.2 ± 4.83 40.8 ± 5.73 39.7 ± 4.88
Average 70.7 ± 10.28 74.8 ± 10.33 43.9 ± 7.49 48.5 ± 8.56

pare for the movement. In current study, we short-
ened it to 1s. Although the variance was larger than
before, subjects reported good attention level, and
from the neurophysiological analysis we observed
clear ERD/ERS patterns and even shorter response
delay than before. Since in either part, the total du-
ration for T1 and T2 windows has been shortened to
2.5s, i.e. 24 trials per minute. Therefore, ITR was
32.16 bits per minute for physical movement and
24.24 bits per minute for motor imagery. Compared
with the results given in previous study (Huang et
al., 2009), ITR was greatly improved.

4.3 Decoding accuracies changing with
time

To achieve four-directional classification for
a two-dimensional control associated with human
natural behavior, the BCI in this study was expected
to show stable and robust performance without sub-
ject’s intensive training. As the results showed,
a trend could be observed that the overall per-
formance for the three subjects improved across
blocks, in either physical part or motor imagery
part. Since model adaptation was used for each
trial and the features were re-selected for each new
block, classification accuracy was supposed to in-
crease or stabilize when the tasks were done con-
sistently, although the increase may be insignifi-
cant. We expect that in further study, with the model
adaptation, the accuracy can increase or at least sta-
bilize in multiple visits, with stable performances
across blocks in each single visit. If that is the case,
the proposed BCI would be able to achieve reliable
control in both short time use and long-term use.

4.4 Spatiotemporal features of ERD and
ERS

As was expected for physical movement, we
observed clear ERD and ERS in beta band over the
contralateral motor cortex associated with the mov-
ing hand, ERD during the sustained movement and
ERS after the movement stopped. We also observed
ERD appeared on ipsilateral hemisphere and even
stronger than that on contralateral hemisphere. We
considered the reason might be that during the hand
moving, although the other hand was not moving,
the automatic urging of the movement also gener-
ated ERD activity, on the contralateral motor cortex,
which was the ipsilateral side of the moving hand.
Similar patterns appeared for motor imagery. In this
case, the discrimination between ‘RYes’ and ‘LYes’
could be difficult, since the movement of either
hand would generate ERD over both hemispheres,
especially when its variance was large. Although in
this study, genetic algorithm combined with adap-
tive method provided multiple features for the clas-
sifier, which greatly helped with the classification,
‘RYes’ and ‘LYes’ was still the most difficult pair to
distinguish compared with others. Further improve-
ment on this issue could be either adding another
feature to enhance classification or improving the
paradigm to avoid direct comparison of ‘RYes’ and
‘LYes’.
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Figure 1. Locations of the 27 EEG surface
electrodes (F3, F7, FC3, C1, C3, C5, T7, CP3, P3,

P7, F4, F8, FC4, C2, C4, C6, T8, CP4, P4, P8,
FPZ, FZ, FCZ, CZ, CPZ, PZ and OZ, marked by

red circles) and the ground (AFz).

The present study further confirms the results
presented in our previous study, which demon-
strated that EEG activity associated with human
natural behavior deliver information from which
human volitional movement intention can be de-
coded. This preliminary study provides evidence
that EEG based natural BCI support 2D control,
with a competitive information transfer rate in terms
of control accuracy and control speed. In particular,
the 2D control can be easily achieved within 3 hours
in the experiment by imaging the movement, where
long time training is no longer needed. Successfully
decoding of movement intention is highly depended
on the experimental design and optimization of pa-
rameters in experiment and computational proce-
dures. Further research is needed to explore the reli-
ability and applicability of the natural BCI on larger
population, including healthy subjects and patients,
in multiple visits, and the how well it can be gen-
eralized to achieve fast continuous control . We an-
ticipate that such studies will further demonstrate
that EEG is highly capable of realizing continu-
ous multi-dimensional control with human natural
behavior or thinking, which will eventually benefit
people in their daily life.
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Figure 3. Scheme of 2D center-out cursor control.
Four directions control by spatial detection of

ERD/ERS on right/left hemisphere associated with
intention to move or cease to move of left/right
hand. In order to control cursor moving to left

(‘LYes’ direction), subjects may perform sustained
physical movement/motor imagery so that ERD on
the right hemisphere can be detected. It is similar

for other direction controls.

List of figure captions.

1. Locations of the 27 EEG surface electrodes (F3,
F7, FC3, C1, C3, C5, T7, CP3, P3, P7, F4, F8,
FC4, C2, C4, C6, T8, CP4, P4, P8, FPZ, FZ,
FCZ, CZ, CPZ, PZ and OZ, marked by red cir-
cles) and the ground (AFz).

2. Online 2D center-out cursor control paradigm.
(a) A trial begins. The target (red) is pseudo-
randomly chosen from the four positions along
the edges; the cursor is in green. Subject starts
motor task for 1 s. (b) The cursor turns to cyan,
at which point subject stops and relaxes in ‘No’
case, or performs sustained movement in ‘Yes’
case for 1.5s. (c) The hint words disappears.
Subject stops the task. (d) The cursor moves
steadily towards the classified direction for 2 s.
(e) The target flashes for 1 s when it is hit by the
cursor. If the cursor misses the target, the screen
is blank for 1 s. (f) The screen is blank for a 1.5s
interval before next trail starts.

3. Scheme of 2D center-out cursor control. Four
directions control by spatial detection of
ERD/ERS on right/left hemisphere associated
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Figure 2. Online 2D center-out cursor control paradigm. (a) A trial begins. The target (red) is
pseudo-randomly chosen from the four positions along the edges; the cursor is in green. Subject starts

motor task for 1 s. (b) The cursor turns to cyan, at which point subject stops and relaxes in ‘No’ case, or
performs sustained movement in ‘Yes’ case for 1.5s. (c) The hint words disappear. Subject stops the task.
(d) The cursor moves steadily towards the classified direction for 2 s. (e) The target flashes for 1 s when it
is hit by the cursor. If the cursor misses the target, the screen is blank for 1 s. (f) The screen is blank for a

1.5s interval before next trail starts.

with intention to move or cease to move of
left/right hand. In order to control cursor moving
to left (‘LYes’ direction), subjects may perform
sustained physical movement/motor imagery so
that ERD on the right hemisphere can be de-
tected. It is similar for other direction controls.

4. Flow chart of online calibration and two-
dimensional cursor control. Calibration data
went through spatially filtering, temporally fil-
tering and empirical feature selection. In clas-
sification, genetic-algorithm based Mahalanobis
linear discrimination (MLD) classifier and deci-
sion tree classifier (DTC) were used to gener-
ate models for online game. During the online
test, data was spatially filtered, temporal filtered,
and empirical features were selected. Then the
model generated in calibration step, giving a
better prediction result was used to classify the
movement intention, and the cursor was moved.
After data pool was updated, the model would
be updated too, using MLD and DTC, and the
one gave a higher result was used as the model
for classification in next trial; if the block ended,
features would be re-selected by genetic algo-

rithm and then generated model by GA-MLD
and DTC, providing it for next trial. If all the
blocks were completed, the procedure ended.

5. Time-course and topography of ERD and ERS
for S1, S2 and S3. For each subject, the left
part is plotted for motor execution and the right
part for motor imagery. The blue color stands
for ERD; the red stands for ERS. T1 window is
from 0 s to 1s and T2 window from 1 s to 2.5
s. For S1and S2, ERD and ERS were clear for
physical movement and motor imagery. For S3,
ERD and ERS can only be clearly observed for
physical movement.

6. Online two-dimensional cursor control accura-
cies of physical movement (Block 1 to Block 6)
and motor imagery (Block 1’ to Block 6’) for
S1, S2 and S3.



105D. Huang, K. Qian, S. Oxenham, D. Fei and O. Bai

image2.jpg

Figure 2. Online 2D center-out cursor control paradigm. (a) A trial begins. The target (red) is
pseudo-randomly chosen from the four positions along the edges; the cursor is in green. Subject starts

motor task for 1 s. (b) The cursor turns to cyan, at which point subject stops and relaxes in ‘No’ case, or
performs sustained movement in ‘Yes’ case for 1.5s. (c) The hint words disappear. Subject stops the task.
(d) The cursor moves steadily towards the classified direction for 2 s. (e) The target flashes for 1 s when it
is hit by the cursor. If the cursor misses the target, the screen is blank for 1 s. (f) The screen is blank for a

1.5s interval before next trail starts.

with intention to move or cease to move of
left/right hand. In order to control cursor moving
to left (‘LYes’ direction), subjects may perform
sustained physical movement/motor imagery so
that ERD on the right hemisphere can be de-
tected. It is similar for other direction controls.

4. Flow chart of online calibration and two-
dimensional cursor control. Calibration data
went through spatially filtering, temporally fil-
tering and empirical feature selection. In clas-
sification, genetic-algorithm based Mahalanobis
linear discrimination (MLD) classifier and deci-
sion tree classifier (DTC) were used to gener-
ate models for online game. During the online
test, data was spatially filtered, temporal filtered,
and empirical features were selected. Then the
model generated in calibration step, giving a
better prediction result was used to classify the
movement intention, and the cursor was moved.
After data pool was updated, the model would
be updated too, using MLD and DTC, and the
one gave a higher result was used as the model
for classification in next trial; if the block ended,
features would be re-selected by genetic algo-

rithm and then generated model by GA-MLD
and DTC, providing it for next trial. If all the
blocks were completed, the procedure ended.

5. Time-course and topography of ERD and ERS
for S1, S2 and S3. For each subject, the left
part is plotted for motor execution and the right
part for motor imagery. The blue color stands
for ERD; the red stands for ERS. T1 window is
from 0 s to 1s and T2 window from 1 s to 2.5
s. For S1and S2, ERD and ERS were clear for
physical movement and motor imagery. For S3,
ERD and ERS can only be clearly observed for
physical movement.

6. Online two-dimensional cursor control accura-
cies of physical movement (Block 1 to Block 6)
and motor imagery (Block 1’ to Block 6’) for
S1, S2 and S3.
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Figure 4. Flow chart of online calibration and two-dimensional cursor control. Calibration data went
through spatially filtering, temporally filtering and empirical feature selection. In classification,

genetic-algorithm based Mahalanobis linear discrimination (MLD) classifier and decision tree classifier
(DTC) were used to generate models for online game. During the online test, data was spatially filtered,

temporal filtered, and empirical features were selected. Then the model generated in calibration step,
giving a better prediction result was used to classify the movement intention, and the cursor was moved.
After data pool was updated, the model would be updated too, using MLD and DTC, and the one gave a
higher result was used as the model for classification in next trial; if the block ended, features would be
re-selected by genetic algorithm and then generated model by GA-MLD and DTC, providing it for next

trial. If all the blocks were completed, the procedure ended.
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Figure 5. Time-course and topography of ERD and ERS for S1, S2 and S3. For each subject, the left part
is plotted for motor execution and the right part for motor imagery. The blue color stands for ERD; the red

stands for ERS. T1 window is from 0 s to 1s and T2 window from 1 s to 2.5 s. For S1and S2, ERD and
ERS were clear for physical movement and motor imagery. For S3, ERD and ERS can only be clearly

observed for physical movement.
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Figure 5. Time-course and topography of ERD and ERS for S1, S2 and S3. For each subject, the left part
is plotted for motor execution and the right part for motor imagery. The blue color stands for ERD; the red

stands for ERS. T1 window is from 0 s to 1s and T2 window from 1 s to 2.5 s. For S1and S2, ERD and
ERS were clear for physical movement and motor imagery. For S3, ERD and ERS can only be clearly

observed for physical movement.
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Figure 6. Online two-dimensional cursor control accuracies of physical movement (Block 1 to Block 6)
and motor imagery (Block 1’ to Block 6’) for S1, S2 and S3.
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