PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effect of water quality change on copper flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Given the significant consumption and future demand for water resources, this paper intends to find the conditions for using a flotation process with different water quality. One of the alternatives is using water under secondary treatment with industrial water mixtures to partly recycle domestic wastewater and maximize metallurgical benefits. Results show that using wastewater (only with secondary treatment) in flotation is detrimental to copper recovery. However, molybdenum recovery is significantly improved. For mixtures with 50 [%] wastewater, 50 [ppm] frother, 20 [ppm] collector, and pH 10, copper recovery decrease amounts to 0.4 [%], while molybdenum shows a 2.4 [%] recovery increase. In addition, copper concentrate grade decreases by 1.4 [%], while molybdenum grade remains. Therefore, using wastewater is viable, particularly in the case of molybdenum. So, this study proposes using of water mixtures in the copper depression stage to improve molybdenum recovery.
Słowa kluczowe
Rocznik
Strony
art. no. 186190
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
  • Departmento de Ingeniería Química y de Medio Ambiente, Universidad Católica del Norte, 1270709, Antofagasta, Chile
autor
  • Departmento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, 2390123, Valparaíso, Chile
  • Departmento de Ingeniería Química y de Medio Ambiente, Universidad Católica del Norte, 1270709, Antofagasta, Chile
  • Oulu Mining School, University of Oulu, 90570, Oulu, Finland;
  • Departmento de Ingeniería de Sistemas y Computación, Universidad Católica del Norte, 1270709, Antofagasta, Chile
Bibliografia
  • ACUÑA, C. 2007. Measurement techniques to characterize bubble motion in swarms. McGill University. Dept. of Mining and Materials Engineering.
  • FINCH J.A., 1995. Column flotation: A selected review— part IV: Novel flotation devices, Minerals Engineering, Volume 8, Issue 6, June, Pages 587-602, ISSN 0892-6875, 10.1016/0892- 6875(95)00023-J
  • FUERSTENAU, M.C., GRAEME J. JAMESON, R. H. YOON, 2007, Froth Flotation: A Century of Innovation SME, ISBN, 0873352521, 9780873352529"
  • GORAIN, B. K., FRANZIDIS, J. Y MANLAPIG, E. 1998. The empirical prediction of bubble surface area flux in mechanical flotation cells from cell design and operating data.
  • HUMIRE, J.M., 2012, Evaluación Experimental Del Proceso De Flotación Para La Remoción De Orgánico Desde Suelos Contaminados, memoria Ingeniero Civil Ambiental, Universidad Católica del Norte
  • FINCH, J.A., AND DOBBY, G.S., 1990. Column flotation. Pergamon Press: Elmsford, New York, pp. 23-24.
  • RAO, S.R., 2003. Surface Chemistry of Froth Flotation. Kluwer Academic/Plenum Publishers; 2nd Rev edition
  • RAO, S.R, J.A FINCH, 1989. A review of water re-use in flotation, Minerals Engineering, Volume 2, Issue 1, Pages 65-85, ISSN 0892-6875, 10.1016/0892-6875(89)90066-6.
  • ZHANG J., ZHANG, W., 2012. Multi-scale Investigation of Appling Secondary Effluent in Sulfide Flotation, water in mineral processing, proceeding of the first international symposium. Edited by Jaroslaw Derlich, pp.279-289.
  • DONOSO M., MELLADO M., GÁLVEZ E., CISTERNAS L., 2012. Water and Energy Use in Mineral Processing: A Case Study in Copper Flotation, Editor(s): Ian David Lockhart Bogle, Michael Fairweather, Computer Aided Chemical Engineering, Elsevier, Volume 30, 627-631. https://doi.org/10.1016/B978-0-444-59519-5.50126-X.
  • NORTHEY, S., MUDD, G., WERNER, T., HAQUE, N., YELLISHETTY, M. 2019. Sustainable water management and improved corporate reporting in mining. Water Resources and Industry, 21, 100104.
  • HOFMEIER, U., YAMINSKY, V. V., CHRISTENSON, H. K., 1995. Observations of solute effects on bubble formation. Journal of Colloid and Interface Science, Vol. 174 (1), pp. 199-210.
  • DUKHIN, S.S., MILLER, R., LOGLIO, G., 1998. Physico-chemical Hydrodynamics of rising bubbles. Studies in interfacial science Vol.6: Drops and bubbles in interfacial research. D. Mubius and R. Miller Editors, Elsevier Science.
  • PENG, Y. BO WANG, ANDREA GERSON, 2012. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding, International Journal of Mineral Processing, Volumes 102–103, 25 January, Pages 141-149, ISSN 0301-7516
  • VASUDEVAN M., BHAMBHANI, T., NAGARAJ D.R., FARINATO, R.S., 2012. Impact of disolved gangue species and fine colloidal matter y water on flotation performance, water in mineral procesing, proceeding of the first international symposium. Edited by Jaroslaw Derlich, 242-259.
  • AZGOMI, F., GOMEZ, C. O. AND J. A. FINCH, 2006. Characterizing Frothers Using Gas Holdup, in Interfacial Phenomena in Fine Particle Technology, 6th UBC-McGill-UA International Symposium on Fundamentals of Mineral Processing (Eds. Z. Xu and Q. Liu), COM 2006, Montreal, Oct 1-4, pp. 429-442.
  • KRATCH, W., ACUÑA, C., OROZCO, Y., 2012. Rol De Los Espumantes En La Selectividad Del Proceso De Flotación De Minerales. 12° Congreso Binacional de Metalurgia y Materiales, Valparaíso, Chile P.23
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8528dfe4-f5b6-4be3-aa8f-9eacc39a5032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.