PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle swarm optimization of the multioscillatory LQR for a three-phase grid-tie converter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Optymalizacja rojem cząstek regulatora liniowo-kwadratowego z członami oscylacyjnymi dla trójfazowego przekształtnika sieciowego
Języki publikacji
EN
Abstrakty
EN
This paper presents an evolutionary optimization of the linear-quadratic (LQ) current controller for a three-phase grid-tie voltage source converter with an L-type input filter. The current control system is equipped with multi-oscillatory terms, which enable the converter to obtain nearly sinusoidal shape and balanced input currents under unbalanced and distorted grid voltage conditions. The augmentation of the state vector to include additional states which describe dynamics of disturbances increases the number of weights to be selected for a cost function in the LQR procedure design. Therefore, it is proposed that optimal weighting factors are sought using particle-swarm-based method. Finally, the simulational tuning based on the linear model and the numerical verification based on a non-linear model of the system with a pulse width modulator are addressed.
PL
Artykuł prezentuje optymalizację ewolucyjną liniowo-kwadratowego regulatora prądu dla trójfazowego przekształtnika sieciowego z filtrem wejściowym typu L. Układ regulacji prądu jest wypozażony w człony oscylacyjne co pozwala na kształtowanie niemal sinusoidalnych i symetrycznych prądów wejściowych w warunkach występowania wyższych harmonicznych i asymetrii napięć sieci. Rozszerzenie wektora stanu o dodatkowe stany opisujące dynamikę zakłóceń zwiększa liczbę wag, które należy dobrać dla funkcji celu ujętej w procedurze projektowania LQR. Dlatego zaproponowano dobór optymalnych wsółczynników wagowych przy użyciu optymalizacji metodą roju cząstek. Finalnie zostały omówione strojenie symulacyjne na modelu liniowym oraz weryfikacja numeryczna na modelu nieliniowym z modulatorem szerokości impulsów.
Rocznik
Strony
43--48
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
autor
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
autor
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
autor
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., Warsaw 00-662, Poland
Bibliografia
  • [1] J. Dannehl, M. Liserre, F. W. Fuchs.: Filter-based active damping of voltage source converters with LCL filter, IEEE Trans. on Industrial Electronics, 58(8), pp. 3623–3633, 2011.
  • [2] A. Vidal, F. D. Freijedo, A. G. Yepes, P. Fernandez-Comesana, J. Malvar, Ó. Lopez, and J. Doval-Gandoy.: Assessment and optimization of the transient response of proportional-resonant current controllers for distributed power generation systems, IEEE Trans. on Ind. Electronics, 60(4), pp. 1367–1383, 2013.
  • [3] L. A. Maccari, J. R. Massing, L. Schuch, C. Rech, H. Pinheiro, R. C. L. F. Oliveira, and V. F. Montagner.: LMI-based control for grid-connected converter with LCL filters under uncertain parameters, IEEE Transactions on Power Electronics, 29(7), pp. 3776–3785, 2014.
  • [4] G. G. Koch, C. R. D. Osório, J. R. Massing, H. Pinheiro, V. F. Montagner, L. A. Maccari, and R. C. L. F. Oliveira.: Comparison of controllers based on lmis for grid-connected converters, 8th Intern. Symposium on Power Electronics for Distributed Generation Systems (PEDG), Brazil, pp. 1–5, 2017.
  • [5] C. Olalla, R. Leyva, A. El Aroudi, I. Queinnec.: Robust LQR control for PWM converters: An LMI approach, IEEE Trans. on Industrial Electronics, 56(7), pp. 2548–2558, 2009.
  • [6] W. Lenwari, M. Sumner, P. Zanchetta.: The use of genetic algorithms for the design of resonant compensators for active filters, IEEETrans.onInd.Electr.56(8), pp.2852–2861, 2009.
  • [7] B. Ufnalski, A. Kaszewski, L. M.Grzesiak.: Particle swarm optimization of the multioscillatory LQR for a three-phase fourwire voltage-source inverter with an LC output filter, IEEE Trans. on Industrial Electronics, 62(1), pp. 484–493, 2015.
  • [8] E. Rakhshani, A. M. Cantarellas, D. Remon, A. Luna, P. Rodriguez.: PSO-based LQR controller for multi modular converters, IEEE ECCE Asia Downunder (ECCE Asia 2013), pp. 1023–1027, 2013.
  • [9] S. E. De León-Aldaco, H. Calleja, J. Aguayo Alquicira.: Metaheuristic optimization methods applied to power converters: A review, IEEE Transactions on Power Electronics, 30(12), pp. 6791–6803, 2015.
  • [10] B. Ufnalski.: Naslin polynomial method and multiresonant current controllers? [web page] http://www.ufnalski.edu. pl/proceedings/misc/Naslin_MOSC_beamer.pdf, [Accessed on 2 Jan. 2018].
  • [11] M. H. Ali, B. Wu, R. A. Dougal.: An overview of SMES applications in power and energy systems, IEEE Trans. on Sus. Energy, 1(1), pp. 38–47, 2010.
  • [12] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. Portillo Guisado, M. A. M. Prats, J. I. Leon, N. Moreno Alfonso.: Power-electronic systems for the grid integration of renewable energy sources: Asurvey, IEEETrans.onIndustrial Electronics, 53(4), pp. 1002–1016, 2006.
  • [13] M. Bobrowska, K. Rafal, H. Milikua, M.P. Kazmierkowski.: Improved voltage oriented control of AC-DC converter under balanced and unbalanced grid voltage dips, Intern.Conf.devoted to 150 Anniversary of Alexander Popov EUROCON’2009, pp. 772–776, Russia, 2009.
  • [14] B. Kedjar, H.Y. Kanaan, K. Al-Haddad.: Vienna rectifier with power quality added function, IEEE Transactions on Consumer Electronics, 61(8), pp. 3847–3856, 2014.
  • [15] A. G. Yepes, F. D. Freijedo, Ó. Lopez, J. Doval-Gandoy.: High performance digital resonant controllers implemented with two integrators, IEEE Transactions on Power Electronics, 26(2), pp. 563–576, 2011.
  • [16] A. Scottedward Hodel, C. E. Hall.: Variable-structure PID control to prevent integrator windup, IEEE Trans. on Ind. Electronics, 48(2), pp. 442–451, 2001.
  • [17] Pierre Naslin.: Essentials of optimal control, Boston Technical Publishers, 1968.
  • [18] A. Galecki, A. Kaszewski, B. Ufnalski, L. M. Grzesiak.: State current controller with oscillatory terms for three-level grid connected pwm rectifiers under distorted grid voltage conditions, 17th European Conference on Power Electronics and Applications (EPE), pp. 1–10, 2015.
  • [19] Yi Fei Wang, Yun Wei Li.: Grid synchronization PLL based on cascaded delayed signal cancellation, IEEE Transactions on Power Electronics, 26(7), pp. 1987–1997, 2011.
  • [20] A. Galecki, L. M. Grzesiak, B. Ufnalski, A. Kaszewski, M. Michalczuk.: Multi–oscillatory current control with anti–windup for grid–connected VSCs operated under distorted grid voltage conditions, 18th European Conf. on Power Electronics and Applications (EPE’17), pp. 1–10, 2017.
  • [21] A. Galecki, L. Grzesiak, B. Ufnalski, A. Kaszewski, M. Michalczuk.: Anti-windup strategy for an LQ current controller with osc.terms for 3-phasen grid-tie VSCs in SMES systems, Power Electronics and Drives, 1(36), pp. 65–81, 2016.
  • [22] K. Zhou, Y. Yang, F. Blaabjerg, D. Wang.: Optimal selective harmonic control for power harmonics mitigation, IEEE Trans. on Industrial Electronics, 62(2), pp. 1220–1230, 2015.
  • [23] M.Clerc,J.Kennedy.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. on Evol. Computation, 6(1), pp. 58–73, 2002.
  • [24] J. Kennedy, R. C. Eberhart.: A discrete binary version of the particle swarm algorithm, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 5(1), pp. 4104–4108, 1997.
  • [25] S.Cui,D.S.Weile.: Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers, IEEE Transactions on Antennas and Propagation, 53(11), pp. 3616–3624, 2005.
  • [26] J. Hazra, A. K. Sinha.: A multi-objective optimal power flow using particle swarm optimization, European Transactions on Electrical Power, 21(1), pp. 1028–1045, 2011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8520c428-8e9b-4916-ba6b-aad585c2fd14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.