PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the temperature-dependent RF ablation produced by the multi-tine electrode

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie zależnej od temperatury ablacji RF wytwarzanej przez elektrodę wielopalcową
Języki publikacji
EN
Abstrakty
EN
The paper discusses a thermal ablation of liver tissue with a multi-tine probe. The 3D model of such applicator with evenly distributed 2–5 arms was placed in hepatic tissue near a cylindrical vessel with circulating blood. The temperature of the surrounding tissue was regulated within defined limits by changing the voltage employed on the RF electrode. The current study examines influence of temperature-dependent and constant parameters of liver tissue on thermal efficiency of ablation procedure. As presented, a blood flowing in the blood vessel causes the cooling of tissue, which requires the electrode voltage to be increased to maintain the set therapeutic levels of temperatures. Interestingly, even larger changes in electrode potential are required in the case of temperature-dependent ablation with a blood vessel.
PL
Praca omawia termiczną ablację tkanki wątroby za pomocą sondy wielopalcowej. Model 3D takiego aplikatora o równomiernie rozmieszczonych 2–5 ramionach umieszczono w tkance wątroby w pobliżu cylindrycznego naczynia z przepływającą krwią. Temperatura otaczającej tkanki była regulowana w określonych granicach poprzez zmianę napięcia przyłożonego na elektrodzie RF. W pracy zbadano wpływ zależnych od temperatury i stałych parametrów tkanki wątroby na sprawność ablacji cieplnej. Jak pokazano, krew płynąca w naczyniu krwionośnym powoduje chłodzenie tkanki, co wymaga zwiększenia napięcia elektrody, aby utrzymać zadane poziomy terapeutyczne temperatury. Co ciekawe, nawet większe zmiany potencjału elektrody są wymagane w przypadku zależnej od temperatury ablacji w obecności naczynia krwionośnego.
Rocznik
Strony
48--51
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Krakow
Bibliografia
  • [1] Hubner F., et al., Ex vivo validation of microwave thermal ablation simulation using different flow coefficients in the porcine liver, Medical Engineering and Physics, 66 (2019), 56-64.
  • [2] Tungjitkusolmun S., et al.,Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation, IEEE Transactions on Biomedical Engineering, 49 (2002), No. 1, 3-9.
  • [3] Gas P., Miaskowski A., SAR optimization for multi-dipole antenna array with regard to local hyperthermia, Przeglad Elektrotechniczny, 95 (2019), No. 1, 17-20.
  • [4] Xu Y., et al., Large and round ablation zones with microwave ablation: A preliminary study of an optimal aperiodic tri-slot coaxial antenna with the π-matching network section, International Journal of Thermal Sciences, 140 (2019), 539-48.
  • [5] Gas P., Wyszkowska J., Influence of multi-tine electrode configuration in realistic hepatic RF ablative heating, Archives of Electrical Engineering, 68 (2019), No. 3, 521-533.
  • [6] Paruch M., Cancer ablation during RF hyperthermia using internal electrode, Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, (2016), 455-458.
  • [7] Singh S., Repaka R., An in Vitro Phantom Study to Quantify the Efficacy of Multi-tine Electrode in Attaining Large Size Coagulation Volume During RFA, IFMBE Proceedings, 68 (2019), 663-668.
  • [8] Hall S.K., et al., Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation, International of Hyperthermia, 31 (2015), No. 5, 538-550.
  • [9] Haemmerich D., et al., In vitro measurements of temperature-dependent specific heat of liver tissue, Medical Engineering & Physics, 28 (2006), No. 2, 194-197.
  • [10] Yero D.D., et al., Modeling of RF thermal ablation taking into account the temperature dependence of the tissue properties, RIELAC, 40 (2019), No. 1, 81-95.
  • [11] Shao Y.L., et al., Nano-assisted radiofrequency ablation of clinically extracted irregularly-shaped liver tumors, Journal of Thermal Biology, 66 (2017), 101-113.
  • [12] Trujillo M., et al., Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation, International Journal of Hyperthermia, 29(2013), 590-97.
  • [13] Deshazer G., et al., Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperaturedependent tissue dielectric models, Medical Physics, 44 (2017), 4859-4868.
  • [14] Frank K., et al., Numerical and experimental characterization of radiofrequency ablation in perfused kidneys, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2012), 5707-5711.
  • [15] Fang Z., et al., Design of a novel electrode of radiofrequency ablation for large tumors: A finite element study, Journal of Engineering and Science in Medical Diagnostics and Therapy, 1 (2018), No. 1, 011001.
  • [16] Chaichanyu t M.,The Modeling of Temperature Distributions of an Interstitial Two-Tine Antenna for Hepatic cancer Microwave Ablation, in Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science, (2017), 129-132.
  • [17] Qin F., et al., A New Model for RF Ablation Planning in Clinic, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2018), 3232-3235.
  • [18] Syrek P., et al., Eddy Currents Distribution in Upper Extremities During Magnetotherapy. in 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), IEEE (2019), [1-4]. DOI: 10.1109/ATEE.2019.8724967
  • [19] Jafarpur K., Emdad H., Roohi R., A Comprehensive Study and Optimization of Magnetic Nanoparticle Drug Delivery to Cancerous Tissues via External Magnetic Field, Journal of Testing and Evaluation, vol. 47, no. 2, pp. 681-703, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8520337a-3029-4840-986c-24e7fce679aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.