Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the hybrid multiple H-bridge topology of beam supply, the load change of a DC/DC full-bridge converter can greatly affect the output voltage during onsite operation. An improved sliding mode control (SMC) strategy is thus proposed in this paper, where the rate of switching control is added to the law of system equivalent control to create a law that can realize a complete sliding mode control. Considering the special operating conditions of the load can have an influence on the performance of the controller, the impact of uncertainty existing in onsite conditions is suppressed with the proposed strategy utilized. The validity of the proposed strategy, finally, is verified by simulation, which proves the outperformance of the system in both robustness and dynamics.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
349--364
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
autor
- Lanzhou Jiaotong University China, Lanzhou Institute of Physics China
autor
- Lanzhou Jiaotong University China, Lanzhou Institute of Physics China
autor
- Lanzhou Jiaotong University China, Lanzhou Institute of Physics China
autor
- Lanzhou Jiaotong University China, Lanzhou Institute of Physics China
autor
- Lanzhou Jiaotong University China, Lanzhou Institute of Physics China
Bibliografia
- [1] Ma S., Wei G., Li Y., Design of power supply test unit for electric propulsion system thruster, Vacuum and Cryogenics (2017).
- [2] Wang S., Wang Wei, Design of a 5kW Modular Power Processing Unit for 30cm Ion Thruster, Spacecraft Engineering, vol. 22, no. 5, pp. 74–79 (2013).
- [3] Li F., Kang Q., Qing J., Li Y., Technology for power processing unit used in high power electric propulsion, Journal of Beijing University of Aeronautics and Astro, vol. 42, no. 8, pp. 1575–1583 (2016)
- [4] Wu T., Zhai H., Wu R., Simulation and Analysis of Beam Supply for High Power Ion Thruster Based on Saber, Space Electronic Technology (2017).
- [5] Kurokawa F., Murata K., Yoshida R. et al., A novel P-I-D digital control FPGA for a switching power supply in HVDC system, IEEE International Symposium on Power Electronics for Distributed Generation Systems (2012), DOI: 10.1109/PEDG.2012.6254051.
- [6] Arvind S., Akshay R., Sreedevi A., A novel constant frequency sliding mode control of DC-DC converters, 2016 IEEE 7th Power India International Conference (PIICON), IEEE (2016), DOI: 10.1109/POWERI.2016.8077387.
- [7] Gao Ming, Wang Dazhi, Li Zhao, A PWM Full Order Robustness Sliding Mode Control for PhaseShifted Full-Bridge Converter, Transactions of China Electrotechnical Society, vol. 33, no. 10, pp. 2293–2302 (2018).
- [8] Hussainy S.A.A., Tandon R.G., Kumar S., PWM Based Sliding Mode Control of DC-DC converters, International Conference on Advances in Power Conversion and Energy Technologies (2012), DOI: 10.1109/APCET.2012.6302052.
- [9] Lopez-Santos O., Martinez-Salamero L., Garcia G. et al., Efficiency analysis of a sliding-mode controlled quadratic boost converter, Power Electronics Iet, vol. 6, no. 2, pp. 364–373 (2013).
- [10] Yao X., Sun Y., Sliding mode control of DC-DC buck converter based on hysteresis modulation, IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific) (2014), DOI: 10.1109/ITEC-AP.2014.6940728.
- [11] Jiao S., Zhang L., Liu D., Fuzzy Sliding Mode Control of High Frequency Switching Power Supply Based on Incremental Switch Item, Transactions of China Electrotechnical Society, vol. 33, no. 22, pp. 5311–5318 (2018).
- [12] Jiao S., Liu C., Huang W., Fuzzy Sliding Mode Control of High Frequency Switching Power Supply Based on Discrete-Time Variable Rate Reaching Law, Transactions of China Electrotechnical Society, vol. 30, no. 20, pp. 108–117 (2015).
- [13] Wang D., Li B., Research on Sliding Mode Algorithm for Buck Converter, Microelectronics, vol. 47, no. 4, pp. 557–561 (2017).
- [14] Knight J., Shirsavar S., Holderbaum W., An improved reliability cuk based solar inverter with sliding mode control, IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 1107–1115 (2017).
- [15] Alsmadi Y.M., Utkin V., Hajahmed M.A. et al., Sliding mode control of power converters: DC/DC converters, International Journal of Control, vol. 6, pp. 1–22 (2017).
- [16] NaW., Chen P., Singh H. et al., Multi-phase sliding mode control for chattering suppression in a DC-DC converter, Energy Conversion Congress and Exposition (2017), DOI: 10.1109/ECCE.2016.7855284.
- [17] Cucuzzella M., Lazzari R., Trip S. et al., Sliding mode voltage control of boost converters in DC microgrids, Control Engineering Practice, vol. 73, pp. 161–170 (2018).
- [18] Repecho V., Biel D., Olm J.M. et al., Robust sliding mode control of a DC/DC Boost converter with switching frequency regulation, Journal of the Franklin Institute, vol. 355, iss. 13, pp. 5367–5383 (2018).
- [19] Pichan M., Rastegar H., Sliding Mode Control of Four-Leg Inverter with Fixed Switching Frequency for Uninterruptible Power Supply Applications, IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 6805–6814 (2017), DOI: 10.1109/TIE.2017.2686346.
- [20] Aroudi A.E., Martinez B., Calvente J., Sliding-mode control of a boost converter feeding a buck converter operating as a constant power load, International Conference on Green Energy Conversion Systems (2017), DOI: 10.1109/GECS.2017.8066249.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-851fffca-c82d-4308-be97-27bbc806261d