PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization - based approach for motion planning of a robot walking on rough terrain

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
National Conference on Robotics (12, 12-16.2012, Świeradów-Zdrój, Poland)
Języki publikacji
EN
Abstrakty
EN
The paper presents a motion planning algorithm for a robot walking on rough terrain. The motion-planer is based on the improved RRT (Rapidly Exploring Random Tree)-Connect algorithm. The Particle Swarm Optimizati on (PSO) algorithm is proposed to solve a posture optimization problem. The steepest descent method is used to determine the postion of the robot's feet during the swing phase. The gradient descent method is used for smoothing the final path. The properties of the motion planning algorithm are presented in four cases: motion planning over a bump, concavity, step and rough terrain mocup. The maximal sizes of particular obstacle types traversable by the Messor robot with the new, optimized motion plan are given.
Słowa kluczowe
Twórcy
autor
  • Poznań University of Technology, Institute of Control and Information Engineering, ul. Piotrowo 3A, 60-965 Poznań, Poland
Bibliografia
  • [1] G. B. Bell, M. Livesey, ”The Existence of Local Minima in Local-Minimum-Free Potential Surfaces”, Towards Autonomous Robotic Systems (TAROS 2005), London, UK,2005 pp. 9–14.
  • [2] D. Belter, P. Skrzypczyński, Integrated motion planning for a hexapod robot walking on rough terrain, 18th IFAC World Congress, Milan, Italy, 2011, pp. 6918–6923
  • [3] D. Belter, P. Skrzypczyński, ”Rough terrain mapping and classification for foothold selection in a walking robot”, Journal of Field Robotics, vol. 28(4), 2011, pp. 497–528
  • [4] D. Belter, P. Skrzypczyński, ”Posture optimization strategy for a statically stable robot traversing rough terrain”. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Villamoura, Portugal, 2012, pp. 2204–2209,
  • [5] S. Fujii, K. Inoue, T. Takubo, T. Arai, ”Climbing up onto Steps for Limb Mechanism Robot “ASTERISK”, In: Proc of the 23rd International Symposium on Automation and Robotics in Construction, 2006, pp. 225–230
  • [6] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, S. Schaal, ”Fast, robust quadruped locomotion over challenging terrain”. In: Proc. IEEE Int. Conf. On Robotics and Automation, Anchorage, USA, 2010, pp. 2665- -2670
  • [7] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, S. Schaal, ”Learning, planning, and control for quadruped locomotion over challenging terrain”, Int. Journal of Robotics Research, vol. 30(2), 2010, pp. 236– 258.
  • [8] D. Dolgov, S. Thrun, ”Detection of principal directions in unknown environments for autonomous navigation”, In: Proc. of the Robotics: Science and Systems, 2008
  • [9] A. Gmerek, ”Wykorzystanie quasi-chaotycznych oscylatorów do generowania rytmu chodu robotów kroczacych”, Postępy robotyki 2012, K. Tchoń, C. Zieliśki (Eds.).
  • [10] A. Gmerek, E. Jezierski, ”Admittance control of a 1-DoF robotic arm actuated by BLDC motor”.In: 17th International Conference on Methods and Models in Automation and Robotics (MMAR), 2012, pp. 633–638.
  • [11] C.T. Kelley, Iterative methods for optimization,SIAM, Philadelphia, 1999.
  • [12] J. Kennedy, R.C. Eberhart, ”Particle swarm optimization”. In: Proc. IEEE Int. Conf. On Neural Networks, Piscataway, Australia, 1995, pp. 1942–1948.
  • [13] M. Kordasz, R. Madoński, M. Przybyła, P. Sauer, Active Disturbance Rejection Control for a Flexible-Joint Manipulator, Lecture Notesin Control and Information Sciences, Robot Motion and Control 2011, K. Kozłowski (Ed.), Springer-Verlag, 2011, pp. 247–256.
  • [14] M. Kowalski, M. Michalski, D. Pazderski, Quadruped walking robot WR-06 – design, control and sensor subsystems, Lecture Notes in Control and Information Sciences, Robot Motion and Control 2009, Springer-Verlag, 2009, pp. 175–184.
  • [15] S. Krenich, M. Urbanczyk, ”Six-Legged Walking Robot for Inspection Tasks”, Solid State Phenomena, vol. 180, pp. 137–144, 2011
  • [16] J.J. Kuffner, S.M. LaValle, ”RRT-Connect: An efficient approach to single-query path planning”. In: Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, USA, 2000, pp. 995–1001.
  • [17] P. D. Kumar, D. Kalyanmoy, and G. Amitabha, ”Optimal path and gait generations simultaneously of a six-legged robot using a GA-Fuzzy approach”, Robotics and Autonomous Systems, vol. 41, no. 1, 2002, pp. 1-20.
  • [18] M. Likhachev, G. Gordon, S. Thrun, ”ARA*: anytime A* with provable bounds on suboptimality”. In: Advances in Neural Information Processing Systems 16: Proceedings of the 2003 conference, 2003.
  • [19] N. Ratliff, M. Zucker, J.B. Andrew, S. Srinivasa, ”CHOMP: Gradient optimization techniques for efficient motion planning”. In: Proc. IEEE Int. Conf. on Robotics and Automation, Kobe, Japan, 2009, pp. 489– 494.
  • [20] R.B. Rusu, A. Sundaresan, B. Morisset, K. Hauser, M. Agrawal, J.C. Latombe, M. Beetz, ”Leaving flatland: efficient real-time 3D perception and motion planning”, Journal of Field Robotics, vol. 26(10), 2009, pp. 841–862.
  • [21] U. Saranli, M. Buehler, D.E. Koditschek, ”Rhex: a simple and highly mobile hexapod robot”, International Journal of Robotics Research, vol. 20, 2001, pp. 616–631.
  • [22] R. Smith, Open Dynamics Engine, http://www.ode.org, 2012.
  • [23] K. Walas, D. Belter, ”Supporting locomotive functions of a six-legged walking robot”, International Journal of Applied Mathematics and Computer Science, vol. 21, no.2, 2011, pp. 363–377.
  • [24] K. Walas, D. Belter, ”Messor – Versatile walking robot for search and rescue missions”, Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 5, no. 2, 2011, pp. 28-34.
  • [25] K. Walas, A. Kasiński, ”Controller for Urban Obstacles Negotiation with Walking Robot”. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Villamoura, Portugal, 2012, pp. 181–186.
  • [26] P. Wawrzyński, ”Real-Time Reinforcement Learning by Sequential Actor-Critics and Experience Replay”, Neural Networks, vol. 22, no. 10, Elsevier, 2009, pp. 1484-1497.
  • [27] P. Wawrzyński, ”Autonomous Reinforcement Learning with Experience Replay for Humanoid Gait Optimization”, Proceedings of the International Neural Network Society Winter Conference, Procedia, 2012, pp. 205–211.
  • [28] T. Winiarski, A. Woźniak, ”Indirect force control development procedure”, Robotica, vol. 31, 4, pp. 465–478, 2013.
  • [29] D. Wooden, M. Malchano, K. Blankespoor, A. Howardy, A.A. Rizzi, ”Raibert, Autonomous navigation for BigDog”. In: Proc. IEEE Int. Conf. On Robotics and Automation, Anchorage, USA, 2010, pp. 4736–4741
  • [30] T. Zielińska, ”Biological inspiration used for robots motion synthesis”, Journal of Physiology – Paris, vol. 103(3-5), September 2009, pp. 133–140, 2009.
  • [31] T. Zielińska, A. Chmielniak, ”Biologically inspired motion synthesis method of two-legged robot with compliant feet”, Robotica, vol. 29, no. 7, 2011, pp. 1049–1057.
  • [32] M. Zucker, J.A. Bagnell, C.G. Atkeson, J. Kuffner, ”An optimization approach to rough terrain locomotion”. In: Proc. IEEE Int. Conf. On Robotics and Automation, Anchorage, USA, 2010, pp. 3589–3595
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-851db1ac-c5d4-426d-9d86-32fc6feff175
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.