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Abstract . Optimization approaches, combinatorial 
and continuous, to a capital-budgeting problem (CBP) are 
presented. This NP-hard problem, traditionally modelled 
as a linear binary problem, is represented as a biquadratic 
over an intersection of a sphere and a supersphere. This 
allows applying nonlinear optimization to it. Also, the 
method of combinatorial and surface cuttings (MCSC) is 
adopted to (CBP). For the single constrained version 
(1CBP), new combinatorial models are introduced based 
on joint analysis of the constraint, objective function, and 
feasible region. Equivalence of (1CBP) to the multi-
choice knapsack problem (MCKP) is shown. Peculiarities 
of Branch&Bound techniques to (1CBP) are described.  

Key words: capital-budgeting problem, integer 
programming, knapsack problem, combinatorial 
optimization, Branch and Bound. 

 
INTRODUCTION 

 
Nowadays, attraction of investment funds are 

relevant more than ever [1]. However, even more 
important is their rational management [2]. Capital-
budgeting modelling - is a universal tool that allows 
applying optimization techniques to the current 
management of (possibly) thousands of capital projects 
that yields the greatest return on investment and satisfies  
specified financial, regulatory and project relationship 
requirements [3, 4], as well as to carry out a rational long-
term planning [5]. In general, vision of the potential cash 
flows is necessary in a direct management, the same as at 
the stage of developing business plans. 

Consider the following capital-budgeting problem 
(CBP) [5]: select potential investments out of the set 

  1X i i ,n
X  maximizing total contribution from all 

investments without exceeding the limited availability of 

resources   1
R j j ,m

R  if partial investments are not 

permitted and are given: a) limits  1jb , j ,m  on the 

resources, b) contribution ic  resulting from the  

investment  1iX , i ,n , c)  the amount jia  of resource 

jR  required for the investment  1  1 iX , i ,n, j ,m .  
The limited resources might be cash, manpower, 

time, etc., the investment decisions – a choice among 
possible plant locations, selecting a configuration of 
capital equipment, picking a set of research&development 
projects, and so on. 

Another scenario for (CBP) [5] is a long-range 
planning. In this case:  

a) m  is the number of periods of planning;  
b) R  - are the periods; 
c) jia  is the net cash flow from the investment iX  

in the period jR ,  1  1 i ,n, j ,m ; 

d) 
jb  represents the incremental exogenous cash flow 

in the period 
jR , 1j ,m . 

All the parameters 
ji i ja ,c ,b  can be arbitrary integers. 

For instance, in the long-range planning (CBP)-version, 
0ija  if the investment iX  requires additional cash in 

the period jR , 0ija  if the investment iX  generates 

cash in the period jR , while 0ija  if it neither requires 

nor generates cash. Also, 0jb  if additional funds are 

made available in the period jR , 0jb  if funds are 

withdrawn in this period, otherwise, 0jb . Finally, if  

0ic  the investment iX   is beneficial, if 0ic  then 

it is harmful, otherwise, iX  is neutral.  
If a plan of the investments denote: 
 

 



n

i i J
x x :  1nJ ,...,n ,  

1 if the investment R  accepted
0 if the investment R  is rejected


 


i

i
i

,

,
x   (1) 

 

then the problem is formalized as follows: find a boolean 

vector (1) maximizing  z= Tc x  subject to constraints that 
the funds required for investment are enough for the 
whole planning horizon.  

Let *x  is an optimal plan, then the mathematical 
model of (CBP) is [3, 5]:  

 

  =arg  * T * Tz max c x, x max c x ,  (2) 

 = 0 1
n

nx B , ,   (3) 

  T
j j ma x b , j J ,   (4) 

 

where:  
 

, R  R,    n
j j ma c , b j J .  (5) 
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If 1m  it is a multiply constrained (CBP), (mCBP), 
if 1m  - is single constrained (1CBP) which looks like 
(2), (3), subject to 

 

Ta x b ,     (6) 

R  R na, c , b .   (7) 
 

Formulas (2)-(5) is a particular case of integer 
programs, namely, it is a linear constrained binary 
program. Exactly it is solvable with help of 
branch&bound (B&B), cutting plane methods, or a 
combination of both - branch&cut techniqies. Also, it can 
be solved approximately by heuristics such as tabu search, 
hill climbing, simulated annealing, evolutionary and 
genetic algorithms, as well as asymptotically by 
asymptotic integer algorithms [4-9]. 

Typically, in (CBP) there are present two types of 
investments: beneficial, that required resources, and 
harmful, that generates cash. In this case, (1CBP) is 
reducible to a knapsack problem, (KP), (0-1KP) [9-12]: 
n  objects with positive values (profits, utilities) ic  and 

weights ia  (  ni J ) are given and a knapsack of a 

capacity b  is formed from them with maximal total value 
(profit, utility).  

It’s mathematical model is (2), (3), (6)  
 

R  R  na, c , b . 
 

Similarly, (mCBP) becomes the multiple constrained 
(KP) (mKP) [10,11] if (4) are knapsack constraints [13], 
i.e., there is holds: 

 

 , R  R ,     n
j j ma c , b j J .   (8) 

 
Detecting (KP)-type problems among  (CBP) allows 

applying various solution approaches specific to (KP) 
exactly and approximately. Among exact approaches are 
dynamic programming (DP), (B&B), and hybridizations 
of both; the  integer hull search with cutting planes and 
tightening constraints. Among approximate are heuristics, 
reduction and asymptotic methods, e.g., greedy and fully 
polynomial time approximation schemes [9-13]. 

 
OBJECTIVES 

 
The purpose of the paper is to present new 

approaches to (CBP) based on analysis of properties of 
nonlinear functions, as well as peculiarities of all 
components of the problem – the feasible discrete set, 
constraints, and objective function. 

 
 

THE ANALYSIS OF RECENT RESEARCHES AND 
PUBLICATIONS 

 
In recent years, heuristic evolutionary and genetic 

algorithms have been intensively developed in integer 
programming, in particular, for (KP)  [14]. 

Recent investigations concerned, primarily, methods 
specific to various KP generalizations such as the 
multidimensional and multi-objective (KP) [15], 
generalized assignment and  quadratic (KP) [16]. 

A great success was achieved in approximate (KP)-
solving. As reported in [14], instances of dimensions up 
to 100000 are solvable by DP, greedy and  genetic 
algorithms, of which the first is exact and last shows 
better results than greedy. Note that execution time of DP 
is, on average, 10 times more than of the approximate 
ones. At the same time, B&B handle problems with at 
most 60000 variables.  

From our point of view, a promising way to solve 
exactly large-size (CBP) is in constructing its new 
Euclidean combinatorial models [17, 18] on nB -subsets, 
investigating  properties of the subsets, then applying 
them in optimization. The optimization approaches can be 
combinatorial, such as branch&bound and branch&cut 
techniques [19, 20], as well as continuous based on 
functional representations of these sets [19, 20] and their 
inscription into a hypersphere. Among the continuous 
approaches are cutting plane techniques [21] and 
equivalent unconstrained reformulations based on 
extensions of objective functions [19, 20]. 

 
THE MAIN RESULTS OF THE RESEARCH 

 
Introduce some terminologies. 
A numerical 1-multiset (or a multiset) [17] is a 

collection of numbers: 
 

    


  
n

i i ni J
G g : g R, i J .  (9) 

 
Without loss of generality, we can assume that its 

elements are ordered: 
 

1 1   i i ng g , i J .  (10) 
 
A multiset is defined by a set  S G  of its different 

elements, a basis, and multiplicities, a G -primary 
specification  G  [18]: 

 
    1 1   

  
k

i i i ki J
S G e : e e , i J ; (11) 

    is a multiplicity of 


 
k

i i ii J
G n : n e . (12) 

 
Now, G  is representable as follows [18]: 
 

 
1 

 j

k

k
n

j j
j J j

G e : n n .  (13) 

 
A 2-multiset is a collection of 2-tuples: 
 

 
1

2
2

  


 
    

 
 

n

i
i i ni J

i

g
G g : g R , i J

g
.  (14) 
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Here, we assume that the tuples are ordered 

lexicographically: 
 

1 1   lex
i i ng g , i J ,  (15) 

 
implying that: 

 
1 1 1 1 2 2

1 1 1 1  if ,        n i i i i i ii J g g ; g g g g . (16) 
 

Similarly to a 1-multiset, different tuples of a 2-
multiset (14) form its basis  S G  whose elements are 
strictly lexicographically ordered: 

 

   
1

2
2

1 1 1

  

   



  

 
    

 
 

  

k

i
j j kj J

i

lex
j j j j j j

e
S G e : e R , j J ;

e

e e e e , e e .

 (17) 

 
In terms of  je -coordinates, this means that: 
 

1 1 1 1 2 2
1 1 1 1  if ,        k i i i i i ii J e e ; e e e e . (18) 

 
Now, similar to a 1-multiset, a G -primary 

specification is defined by (12) and the 2 multiset is 
representable in the form (13). 

A set  S
n
k G  is a set of n -combinations with 

repetitions from the multiset (13) with     nG k  [22]. 

Its elements are ordered n -samples from G  whose 
coordinates are ordered non-decreasingly: 

 

   
1 1

S   

x   

   

 

n n
k i n

i i n

G x R : x S G , i J ;

x , i J .

 (19) 

 

A convex hull of (19) is a polytope  Q
n

k G  of n -
combinations with repetitions [22] which is a n -simplex:   

 

   

 1 1 1

Q S

  

 

   

n n
kk

n
n k i i

G conv G

x R : x e , x e ; x x ,i
.    (20) 

 
After eliminating the constraint on ordering x -

coordinates,    S  Q
n n
k kG , G  become a set  

n
kE G  

and a polytope  
n
k G  of permutations with 

repetitions, respectively [18]: 
 

    E  x     
n n
k i nG x R : S G , i J , (21) 

 

 

   1    e e
n n
k kG x R : x . (22) 

 
A particular case of (21), (22) are the Boolean set and 

unit hypercube [19, 20]: 
 

    
    

2

2

= 0 1 0 1

0 1 0 1



  

nn n n
n

nn n n
n

B , E , ,

PB , , .

 

 
If, in a zero-one multiset, multiplicities of 0 1,  can be 

restricted:  
 

 1 2
1 2 1 20 1 1  =    

 
    G , : , n, n , (23) 

 
the corresponding nB  - subset is a  Boolean permutation 

set  2nB [20] if  n  and it is a  Boolean partial 

permutation set  1 2 nB n ,  [20] if   n :  
 

  a R 


  a
ni J

a  

   2 2=   1 T
n nB x B : x ,  (24) 

   1 2 1 2=      1   T
n nB n , x B : n x .  

 
Convex hulls of the sets (24) are 1n -hypersimplex 

and n - hypersimplex [20]: 
 

 1 2 1 2=     1   T
n, , nx B : n x .   (25) 

 
A particular case of (25) is a unit n -simplex:  
 

 2 2=   1 T
n, nx B : x ,  

 

   0 1=conv 0 1 1  0 1 T
n, , nB , x : x . (26) 

 
One more nB -subset is a Boolean set of 

combinations with repetitions     2S 0 1
n n n, . 

The Cartesian product of  combinatorial sets is called 
a set of the sets’ tuples.  

Let nJ   be partitioned into l  subsets: 
 

1 1
 0   




     
ll

n j j j l j
j

j

J I , I n , j J , n n , (27) 

    2 2


 
l

l
j j J

n n , ,  (28) 
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Then, for instance,  
 

     22 1
0 1  S 0 1


 S j j j

ln n n nn n

j
, , , (29) 

   
1

0 1  0 1


 B
j

l

nn j
, B ,  -  (30) 

 
are a set of tuples of the 0-1 combinations with repetitions 
and a 0-1 set of tuples sum to at most 1, respectively. 

Preliminary stage. It is known [10], (1CBP) is 
reducible to (KP) and after this transformation the 
problem dimension (possibly) decreases. Recall its stages 
and then modify them for (mCBP) and apply.  

1. Denote  
 

   

   

0 10 0 0 0

0  0 

     

   

i i i i

i i i i

I i : a ,c ,I i : a ,c

I i : a ,c , I i : a ,c ;
 (31) 

     

   0 1
 =

  

 
. . .

. , , ,

n I , n n.  (32) 

 

2. Assign 
0

1

0  , 

1  

 
 



*
i

, i I
x

, i I ,
 and reduce the 

dimension to 0 1  n' n n n . 

3. Introduce new variables:  

 

1  





 
 

  

i
i

i

x , i I ,
y

x , i I .
 . 

Now, (1CBP) is equivalent to  (KP): 
 

1     

  *
i i i

i I I i I I

z max c y c , (33) 

  0 1     iy , , i I I . (34) 

1     

  i i i

i I I i I I

a y b a , (35) 

 
For (mCBP), (31), (32) become: 
 

 

 

   

0

1

0 0 1

0  0

0  0

0   

   

   

   

i ji m

i ji m

i n

I i : c , a , j J ,

I i : c , a , j J ,

I i I : c , I J \ I ,I ,I .

(36) 

 
Formulas (33)-(35) are transformed into: 
 

1    

  *
i i i

i I I i I I

z max c y c , (37)

  0 1    iy , , i I I ,  (38) 

1
 

    

     ji i ji i j ji m

i I i I i I I

a y a y b a , j J . (39) 

 

The problem (37)-(39) is (mKP) if, in (36),  
 

 0  0    i ji mI I i : c , a , j J , (40) 

 
otherwise, it is a general linear binary problem 

(referred to as (mCBP) again). 
 
Approaches to (mCBP). For this general case, we 

recommend the following continuous approaches: 
1. The method of combinatorial and surface cuttings 

(MCSC) [21] where a sphere 
 

2

1

1
2 4

 
  

 


n

i

i

n
S : x         (41) 

 
circumscribed around nB  [19, 20] is used. (41) implies 

that nB  is polyhedral-spherical [20], therefore we use 
two continuous relaxations of (mСBP) – spherical and 
polyhedral [19, 20]: 
 

  =arg  
 

S T S T

x S x S

z max c x, x max c x ,     (42) 

  =arg  
 

P T P T

x P x P

z max c x, x max c x ,     (43) 

 

  

 

0 1  

    

   

T
n j j m

n T
j j m

P convB x : a x b , j J

x , : a x b , j J .
 (44) 

 
Assume that  n' dimP n , otherwise, a 

projection onto n'  dimensional space is performed. 
Outline (MCSC) in application to (mСBP): 
- solve the linear program (43); 

- if P
nx B , then * Px x , otherwise, form a right cut 

for Px : 

o choose n  P -edges intersecting at Px : 

   


  
 

n

p i i
i

ii J
l x ,x : x vertP ; 

o use the relaxation (42) extending the edges 

toward   i p
nx x , i J , up to an intersection with S  

and get   i

i
Y y S ; 

o construct, trough Y , a hyperplane 

 1 1   T
m mx : a x b  and a cut of Px  

 1 1 1 1 1      T T P
m m m m mD x : a x b : a x b ; 

- add 1mD  to (44), set 1 m m ,  and repeat 
all these steps iteratively. 

 
2. The Lagrangian and penalty methods based on the 

following functional representations of nB  [19]: 
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(R1): 

 

   

2
1

1 1

4
2

1

0

0 2 06 50 5

 



  

   

 



n n

i i

i i

n

i

i

f x x x ,

f x x n.. ;

 

 (R2):     1 20  0 f x , f x . 
 

If  0   Tf x c x ,  2     T
j j j mf x a x b , j J , 

then an equivalent problem to (mСBP) is: 
 

     
2

0
1





   
m

j j

j

F x, f x f x min,  (45) 

2 
 n mx R , R .   (46) 

 
Formulas (45), (46) is solvable numerically [23] and 

yields a local minimum for (mСBP). 
Another approach is incorporate all constraints into a 

penalty function [23], e.g.: 
 
   

      

0

2 22 2
1 2

3
0





 

 
    

 
 



 


m

j

j

x, f x

f x f x min , f x min

 

 
solvable numerically for increasing sequence of  R , 
and get also a local minimum for (mСBP). The 
Lagrangian  F x, - and penalty minimization 
techniques can be combined by the augmented 
Lagrangian method  [23]. 

Approaches to (1CBP). First, transform the problem 
into (KP). Assume that we deal with (2)-(4),(8). 
Preliminary, check the following: a)  i

i

a b , 

otherwise, (4) does not work; b) multiplicities of items 
allow to put the whole group jG  of items of the same 

weight je  in the knapsack:     j j ln b / e , j J , 

where:   

   


  j

l

n

i ji
j J

A a e  

1 1 1 1         i i n j j la a , i J ; e e , j J . (47) 
 

Otherwise,         
'

l j j jj J n n b / e  items of 

jG  with the smallest values are eliminated from A ; c) a 
capacity of the knapsack does not require each specific 

jG : 
1


n

i j j

i

a - n e b ,   lj J , otherwise,  

1

  
   
   


n

"
j i j

i

n b a / e  items of jG  with the largest 

values are placed in the knapsack.  

 

To get initial feasible solutions **x , lower lz  and 

upper uz  bounds on *z , determine values 
  i i ir c / a , i  of the profit per unit weight [10]  

 

  1 1:  
   

j jn j i i nj
J i r r , j J . 

 

Now, the knapsack **x  is filled with the items with 

the largest ir -values: 0 01   0     
j j

** **
i ix , j j , x , j j . 

A polyhedral relaxation (43) solution [10]: 
 

0 01   0  1    
j j

P P
i ix , j j ; x , j j ;

0

0 01 1
1

 



 
  
 
 

j j j

j
P
i i i

j

x b a / a . 

 

** Px ,x  yield the bounds 
0

1
  j

j
l T **

i

j

z c x c ,   

0 01 1   
     
  j j

u P P T P l P P
i iz z , z c x z x c . 

 
Now, a two-sided knapsack constraint [24]: 
   

1  l T uz c x z   (48) 
 
can be added to (KP). 
 

Another two-sided knapsack constraint - on a number 

k  of items in *x   - may be added: 
 

1 2  1Tk k x k .  (49) 
 
The bounds 1 2k ,k  can be found by filling the 

knapsack with the heaviest and lightest items, 
respectively: 

 
2 2 1

2
1 1

 


 

  
k k

i i

i i

k : a b, a b ;  (50)  

1 1 1

1 1 1
1 1

 


   

 

  
k k

n i n i

i i

k : a b, a b . (51) 

 
In terms of the  Boolean partial permutation set (see 

(24)). Now, our (KP) is reformulated as a linear 
constrained combinatorial problem (referred as (KP.C1)) 
(2), (6), (48), 

 

 1 2 nx B k ,k .  (52) 
 
Notice, (52) may considerably reduce the search 

domain in comparison with (3). 
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A specifics of B&B for (KP.C1). As  1 2nB k ,k  is 

decomposed into  nB k -sets: 
 

   
2

1
1 2


 

k

n n
k k

B k ,k B k ,  (53) 

 
the traditional for binary problems branching scheme 
based on fixing a coordinate [4-11] (we refer it to as 
Scheme 1) can be combined with another one (Scheme 2), 

based on analysis of integrity of  eP T Pk y . We 

recommend the following: if Pk Z , then (Scheme 1) 
is applied, otherwise, (Scheme 1) is used. It is based on 
the fact that the feasible region is divisible into branches:  
 

  x k  
 

eT PB x : ,   x k  
 

eT PB' y : . 

 
Now, (KP.C1) is decomposed into two (KP.C1)-

subproblems of the same dimension: (2), (6), (48) on 

 1 k 
 

P
nB k , ,  2k 

 
P

nB ,k , respectively. Since 

Px B,B' , the polyhedral relaxations on two 
hypersimplexes (25) need  to be solved.  

For these subproblems, infeasibility of (KP.C1) and 
irredundancy of constraints (2), (6) are easily verified. It 
is due to  1 2nB k ,k  is a kind of the partial permutation 
set and a linear problem over (53) is solved explicitly 
[18].  

Remark. Ordering (47) allows (possibly) adding new 
constraints to (KP.C1). Namely: 

 

1 if      n j i i ji J j < i : c c x x , (54) 
 
implying a priority of an item that is neither heavier not 
less valuable than another one.  
 

A model (KP.C2). The observation (54) allows to 
order variables within each jG . For that, a 2-multiset 

  



n

T
i i

i J
AC a ,c  of the items weights and values 

are ordered:    1 1 1    
T Tlex

i i i i na ,c a ,c , i J .  

Now, from (54), there follows:   lj J :  

0 0
1

11  \ 


  
j j

l i i n n
n x x , i J J , where 0

0 0n , 

0

1
 



 
j

j i l

i

n n , j J . With (53), this implies (see (19)) 

that   
 

  lj J :     0 0
1

2\ 0 1



 

j j j

n nj j

n n n
j i i J J

x x S , ,  (55) 

Respectively, according to (27)-(29), 
 

  2
0 1S

n n nx , .  (56) 

 
A new (KP)-model (referred as (KP.C2)) is a linear 

constrained problem (2),(6),(48),(49), (56) on the set of 
tuples of 0-1-combimations with repetitions. 

Notice a peculiarity of B&B for (KP.C2) that 
(Scheme 1) of fixing a variable within each 

 1j jG : n ,  leads to decomposition of the problem 

into two subproblems of the dimension 1    jn , n n .  
Thus, considering large-size groups first are expected to 
discard the branches faster.  

A model (KP.C3). One more combinatorial model of 
(KP) will be formed based on the following proposition: 

Proposition 1. A linear program (2),(4) 
 

 Q
n
kx G ,   (57) 

 
is equivalent to a linear problem: 
 

  =arg  * T * Tz' max c' y, y' max c' y ,  (58) 
 0y ,    (59) 

1 eT
ky e e ,   (60) 

A' y b' .   (61) 
 

Proof. By (20), the  polytope  Q
n

k G  is n -simplex 
given by a system: 

 

1 1x e .   (62) 

1 1   i i nx x , i J .  (63) 

n kx e .   (64) 
 

Introduce a change of variables: 
 

1 1 1 y x e ,   (65) 

 1  1  i i i ny x x , i J \ .  (66) 
 

Formula (65) transforms the (62)  into 1 0y , (66) 

with (63) yields  0  1 i ny , i J \  Hence (59) holds. 
The inverse change of variables is: 

 

1
1

 


  
i

i j n

j

x y e , i J .  (67) 

 
By (67), the constraint (64) becomes:  

1 1
1 1

 or 
 

     
n n

n j k j k

j j

x y e e y e e  
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that is (60). Transform the constraints (4) in the form: 

 

1
 



 
n

ji i j m

i

a x b , j J .  (68) 

 
Applying (67) to (68), we obtain: 
 

1 1
1 1 1 1 1    

 
    
 
 

   
n i n n i

ji j' ji ji i'

i j' i i i'

a y e e a a y

1
1 1

 
  

     
n n n

ji i ji' j m

i i i' i

e a y a b , j J ,  

 
wherefrom, (61) is derived with  
 

    =


 ' '
ji j

m n m
A' a , b' b : 1

1
  

n
'
j j ji

i

b b e a ,  

  


  
n

'
ji ji' n m

i' i

a a , i J , j J .  (69) 

 
Similarly, (2) becomes (58) with 
 

 =   


 
n

' '
i i i' n

n
i' i

c' c : c c , i J . (70) 

 
Corollary 1. A linear program (2), (4) 
 

  Q 0 1
n n n
kx , ,   (71) 

 
is equivalent to a linear program (58), (61), (69), (70),  

 

b' b ,   0 1n, ,y .   (72) 
 

If, in the corollary, we move on to a vertex set of  

  Q 0 1n n n
k , , (71), (72) are transformed into:  

  S 0 1
n n n
kx , , 

 

 0 1 ny B , .  (73) 
 

Corollary 2. A linear program (58), (61), (73) is 
equivalent to 1n -dimension linear multi-choice 
knapsack problem (MCKP) [10]: 

 

  =arg  
T T* *z' max c y, y' max c y , (74) 

 1 1 ny B , 

    1
1

1
 1





    
n

' n
i i i i

i

y y , c c R : y y , 

 

subject to (61). 

Proposition 2. A linear program (2), (6), (56) is 
equivalent to linear constrained over (30). 

 
 Proof. Combine the linear constraints (6), (48), (49) 

of (KP.C3) into a system (4) with 5m .  Decompose 
this problem into l  subproblems corresponding to each 
group jG : 

 

 
0 0

1
\ 

1
 =   






  
n nj j

l
TT
j j j i li J J

j

z c x c x , c c , j J , 

 
0 0

1
\ 

1
 ,






   
n nj j

l
TT
ij j iji i ij i J J

j

a x a x b , a a i j . 

 
Applying Corollary 1 to vectors (55), they are 

transformed into  
 

 0 1   
jn ljy B , , j J ,  (75) 

 
Subject to five common linear constraints, for all 

these groups, representable in the form (61). By (30), the 
combinatorial constraints (73) are combined into: 

 

 0 1B
n

y , .   (76) 

 
The model (58), (61), (74) (referred to as  (KP.C3)) is 

(KP) equivalent reformulation on the 0-1 set of tuples 
sum to at most 1. 

 
Remark. Further application Corollary 2 to (KP.C3) 

transforms it into (MCKP) of the dimension n l . Thus 
we found an equivalent reformulation of (KP) as 
(MCKP). Now, techniques  specific to (MCKP) [9-11] 
can be applied to the standard (KP), as well as to it’s 
another generalization -  (1CBP).  

 
CONCLUSIONS 

 
1. New optimization approaches to the capital-

budgeting problem (CBP) are presented. They are based 
on biquadratic functional representation of nB . Two of 
them are continuous and one – combinatorial. These are: 
an exact cutting plane (MCSC), an approximate based on 
(CBP)-reformulation as a nonlinear unconstrained 
problem, and exact – B&B, respectively. The continuous 
methods are extendable into most (KP)-generalization 
including nonlinear. 

2. A possibility of reducing  a feasible region of  
(1CBP) depending on a presence of repetitions in c -
coefficients  was studied and three equivalent 
combinatorial  models of  (1CBP) were obtained – on 

 1 2nB k ,k ,   2
0 1S

n n n, ,  and  0 1Bn , .  A new 

branching scheme based on nB -decomposition into 

 nB k -sets are recommended to (1CBP). 
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