PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Numerical Studies on the Static Deflection of the Composite Beam with the MFC Element

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the FE model of multi–layers composite beam with added Macro Fiber Composite (MFC) active element is presented. At the first step of study the model of the MFC element was prepared. The experimental validation was made. Next, a static deflection of the composite beam with the actuator was calculated. The piezoelectric effects was analyzed. The results of the FEM simulations were compared with the experimental results. A very good agreement was achieved.
Rocznik
Strony
97--108
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Department of Applied Mechanics Lublin University of Technology Nadbystrzycka 36 St., PL-20-618 Lublin, Poland
autor
  • Department of Applied Mechanics Lublin University of Technology Nadbystrzycka 36 St., PL-20-618 Lublin, Poland
autor
  • Department of Applied Mechanics Lublin University of Technology Nadbystrzycka 36 St., PL-20-618 Lublin, Poland
Bibliografia
  • [1] Bauchau, O. and Hong, C.: Finite element approach to rotor blade modeling, AJournal of the American Helicopter Society, 32(1), 60–67, 1987.
  • [2] Chesne, S., Jean-Mistral, C. and Gaudiller, L.: Experimental identification of smart material coupling effects in composite structures, Smart Materials and Structures , 22(10), 1–10, 2013.
  • [3] Latalski, J.: Modelling of macro fiber composite piezoelectric active elements in ABAQUS system, Eksploatacja i Niezawodność- Maintenance and Reliability, 4, 72–78, 2011.
  • [4] Teter, A., Gawryluk, J. and Warmiński, J.: An influence of the d311 effect on the behavior of the cantilever beam–shaped piezoelectric activator made of two layers of PVDF with inverse polarity, Applied Computer Sience, 10(3), 23–33, 2014.
  • [5] Latalski, J., Warmiński, J. and Georgiades, F.: Mode shapes variation of a composite beam with piezoelectric patches, Transactions of the Institute of Aviation, 218, 36–43, 2011.
  • [6] Mahesh, N. and Raghu, T.: Modular analysis of main rotor blade of light helicopter using FEM, International Journal of Engineering Research & Technology, 4(5), 1492–1496, 2015.
  • [7] Nechibvute, A., Chawanda, A. and Lunhanga, P.: Finite element modeling of a piezoelectric composite beam and comparative performance study of piezoelectric materials for voltage generation, International Scholarly Research Network Materials Science, 1–11, 2012.
  • [8] Nestorovic, T., Durrani, N. and Trajkov, M.: Experimental model identification and vibration control of a smart cantilever beam using piezoelectric actuators and sensors, Journal of Electroceramics, 29, 42–55, 2012.
  • [9] Nestorovic, T., Marinkovic, D., Shabadi, S. and Trajkov M.: User defined finite element for modeling and analysis of active piezoelectric shell structures, Meccanica, 49, 1763–1774, 2014.
  • [10] Nestorovic, T., Shabadi, S., Marinkovic, D. and Trajkov M.: Modeling o piezoelectric smart structures by implementation of a user defined shell finite element, Facta Universitatis, Mechanical Engineering, 11(1), 1–12, 2013.
  • [11] Nestorovic, T. and Trajkov, M.: Active control of smart structures – an overall approach., Facta Universitatis, Architecture and Civil Engineering, 8(1), 35–44, 2010.
  • [12] Sadilek, P. and Zemcik, R.: Frequency response analysis of hybrid piezoelectric cantilever beam, Engineering mechanics, 17(2), 73–82, 2010.
  • [13] Sartorato, M., De Medeiros, R. and Tita, V.: A finite element for active composite plates with piezoelectric layers and experimental validation, Blucher Mechanical Engineering Proceedings, 1(1), 2867–2883, 2014.
  • [14] Borowiec, M.: Energy Harvesting of Cantilever Beam System with Linear and Nonlinear Piezoelectric Model, European Physical Journal - Special Topics, 224, 2771–2785, 2015.
  • [15] Borowiec, M., Litak, G., Friswell, M. I. and Sondipon, A.: Energy Harvesting in a Nonlinear Cantilever Piezoelastic Beam Sysem Excited by Random Vertical Vibrations, International Journal of Structural Stability and Dynamics, 14(8), 1–13, 2014.
  • [16] De Marqui Junior, C., Erturk, A. and Inman, D. J.: An electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates, Journal of Sound and Vibration, 327, 9–25, 2009.
  • [17] Ghareeb, N. and Schmidt, R.: Active Control of a Reduced Model of a Smart Structure, 10(3), Tech Science Press, 177–199, 2013.
  • [18] Kumar, S., Srivastava, R. and Srivastava, R.K.: Active Vibration Control of Smart Piezo Cantilever Beam using PID Controller, International Journal of Research in Engineering and Technology, 3(1), 392–399, 2014.
  • [19] Mitura, A., Kazmir, T., Warmiński, J., Augustyniak, M. and Jarzyna, W.: Vibration Suppression of Composite Plate with MFC Active Elements, Machine Dynamics Research 34(2), 86–92, 2010.
  • [20] Mitura, A, Warmiński, J, Bocheński, M.: Active vibration suppression by application of macro fiber composite, Machine Dynamics Research, 35(2), 55–61, 2011.
  • [21] Najeeb ur Rahman and Naushad Alam M.: Active Vibration Control of a Piezoelectric Beam using PID Controller: Experimantal Study, Latin American Joural of Solids and Structures, 9, 657–673, 2012.
  • [22] Nestorovic, T. and Trajkov, M.: Optimal Actuator and Sensor Placement Based on Balanced Reduced Models, Mechanical Systems and Signal Processing, 36, 271–289, 2013.
  • [23] Sodano, H. A., Park, G. and Inman D. J.: An investigation into the performance of macro–fiber composites for sensing and structural vibration applications, Mechanical Systems and Signal Processing, 18, 683–697, 2004.
  • [24] Warmiński, J., Bocheński, M., Jarzyna, W., Filipek, P. and Augustyniak, M.: Active suppression of nonlinear composite beam vibrations by selected control algorithms, Communications in Nonlinear Science and Numerical Simulation, 16(5), 2237–2248, 2011.
  • [25] Matthews, F., Davis, G., Hitchings, D. and Soutis, C.: Finite Element Modeling of Composite Materials and Structures, Woodhead Publishing Series, 2000.
  • [26] Piefort, V.: Finite element modeling of piezoelectric active structures, Master's thesis, Faculty of Applied Sciences, Universit’e Libre de Bruxelles, 2001.
  • [27] Tenek, L. and Argyris, J.: Finite Element Analysis for Composite Structures, Springer, London, 1998.
  • [28] Varadan, V. K., Vinoy, K. J. and Gopalakrishnan, S.: Smart Material System and MEMS: Design and Development Methodologies, John Wiley & Sons Ltd, England, 2006.
  • [29] Smart Material, http://www.smart-material.com/MFC-product-main.html / (28.12.2015)
  • [30] Abaqus 6.14 documentation
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8511b60a-67d4-443f-bff0-b2685f9da30d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.