PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic Extraction of the Pelvicalyceal System for Preoperative Planning of Minimally Invasive Procedures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Minimally invasive procedures for the kidney tumour removal require a 3D visualization of topological relations between kidney, cancer, the pelvicalyceal system and the renal vascular tree. In this paper, a novel methodology of the pelvicalyceal system segmentation is presented. It consists of four following steps: ROI designation, automatic threshold calculation for binarization (approximation of the histogram image data with three exponential functions), automatic extraction of the pelvicalyceal system parts and segmentation by the Locally Adaptive Region Growing algorithm. The proposed method was applied successfully on the Computed Tomography database consisting of 48 kidneys both healthy and cancer affected. The quantitative evaluation (comparison to manual segmentation) and visual assessment proved its effectiveness. The Dice Coefficient of Similarity is equal to 0.871 ± 0.060 and the average Hausdorff distance 0.46 ± 0.36 mm. Additionally, to provide a reliable assessment of the proposed method, it was compared with three other methods. The proposed method is robust regardless of the image acquisition mode, spatial resolution and range of image values. The same framework may be applied to further medical applications beyond preoperative planning for partial nephrectomy enabling to visually assess and to measure the pelvicalyceal system by medical doctors.
Rocznik
Strony
3--18
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wzory
Twórcy
autor
  • AGH University of Science and Technology, Department of Measurement and Electronics, Al. Mickiewicza 30, 30-059 Cracaw, Poland
autor
  • AGH University of Science and Technology, Department of Measurement and Electronics, Al. Mickiewicza 30, 30-059 Cracaw, Poland
  • Rydygier Memorial Hospital, Department of Urology, Os. Złotej Jesieni 1, 31-826 Cracaw, Poland
autor
  • Specialized Municipal Hospital G. Narutowicz, Department of Urology, Prądnicka 35-37, 31-202 Cracaw, Poland
autor
  • AGH University of Science and Technology, Department of Measurement and Electronics, Al. Mickiewicza 30, 30-059 Cracaw, Poland
Bibliografia
  • [1] Statistical Bulletin of the Ministry of Health. (2016). Centre for Health Information Systems.
  • [2] Ukimura, O., et al. (2012). Three-dimensional reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia partial nephrectomy. European Urology, 61(1), 211-217.
  • [3] Ljungberg, B., et al. (2015). Guidelines on Renal Cell Carcinoma. European Association of Urology.
  • [4] Zöllner, F.G., et al. (2012). Assessment of Kidney Volumes From MRI: Acquisition and Segmentation Techniques. American Journal of Roentgenology, 199 (5), 1060-1069.
  • [5] Will, S., et al. (2014). Automated segmentation and volumetric analysis of renal cortex, medulla, and pelvis based on non-contrast-enhanced T1-and T2-weighted MR images. Magnetic Resonance Materials in Physics, Biology and Medicine, 27(5), 445-454.
  • [6] Yang, X., et al. (2015). Automatic Segmentation of Renal Compartments in DCE-MRI Images. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, 3-11.
  • [7] Li, X., et al. (2011). Renal cortex segmentation using optimal surface search with novel graph construction. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2011, 387-394.
  • [8] Pohle, R., Toennies, K.D. (2001). A new approach for model-based adaptive region growing in medical image analysis. Computer Analysis of Images and Patterns Journal, 238-246.
  • [9] Abiria, B., et al. (2014). Performance of an automated renal segmentation algorithm based on morphological erosion and connectivity. Proc. of SPIE, Medical Imaging 2014: Computer-Aided Diagnosis, 90352R-90352R−5.
  • [10] Sun, Y. et al. (2002). Kidney segmentation in MRI sequences using temporal dynamics. Proc. of IEEE International Symposium on Biomedical Imaging, 98-101.
  • [11] Chan, T.F., Vese, L.A. (2001). Active contours without edges. IEEE Trans. on image processing, 10(2), 266-277.
  • [12] Shehata, M., et al. (2015). A level set-based framework for 3D kidney segmentation from diffusion MR images. Proc. of International Conference on Image Processing, 4441-4445.
  • [13] Song, T., et al. (2008). Segmentation of 4D MR Renography Images Using Temporal Dynamics in a Level Set Framework. Proc. of IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 37-40.
  • [14] Bugajska, K. et al. (2015). The renal vessel segmentation for facilitation of partial nephrectomy. Proc. of IEEE, SPA: Signal Processing: Algorithms, Architectures, Arrangements and Applications, 50-55.
  • [15] Yushkevich, P.A., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31(3), 1116-1128.
  • [16] Pankaj, R., et al. (2014.) Radiological Study of Variations in the pelvicalyceal system of kidney. International Journal of Biological and Medical Research, 5(3), 4336-4339.
  • [17] Sampaio, F.J.B., et al. (1988). Anatomic classification of the kidney collecting system for endourologic procedures. Endourology, 2(3), 247-251.
  • [18] Sampaio, F.J.B., et al. (1992). Inferior pole collecting system anatomy: its probable role in extracorporeal shock wave lithotripsy. Journal of Urology, 147, 322-324.
  • [19] Keeley, F.X. Jr., et al. (1999). Clearance of lower-pole stones following shock wave lithotripsy: effect of the infundibulopelvic angle. European Urology, 36, 371-375.
  • [20] Sumino, Y., et al. (2002). Predictors of lower pole renal stone clearance after extracorporeal shock wave lithotripsy. Journal of Urology, 168, 1344-1347.
  • [21] Lin, C.C., et al. (2008). Predictive factors of lower calyceal stone clearance after extracorporeal shockwave lithotripsy (ESWL): the impact of radiological anatomy. Journal of the Chinese Medical Association, 71(10), 496-501.
  • [22] Resorlu, B., et al. (2012). The Impact of Pelvicaliceal Anatomy on the Success of Retrograde Intrarenal Surgery in Patients With Lower Pole Renal Stones. Urology, 79(1), 61-66.
  • [23] Elbahnasy, A.M., et al. (1998). Lower caliceal stone clearance after shock wave lithotripsy or ureteroscopy: the impact of lower pole radiographic anatomy. Journal of Urology, 159, 676-682.
  • [24] Fong, Y.K., et al. (2004). Lower pole ratio: a new and accurate predictor of lower pole stone clearance after shockwave lithotripsy. International Journal of Urology, 11, 700-703.
  • [25] Türk, C., et al. (2015). Guidelines on Urolithiasis. European Association of Urology.
  • [26] Xu, Y., et al. (2016). The value of three-dimensional helical computed tomography for the retrograde flexible ureteronephroscopy in the treatment of lower pole calyx stones. Chronic Diseases and Translational Medicine, available online Apr. 06, 2016, DOI:10.1016/j.cdtm.2016.02.001.
  • [27] Sargin, S.Y., et al. (2014). The efficacy of radiographic anatomical measurement methods in predicting success after extracorporeal shockwave lithotripsy for lower pole kidney stones. International Brazilian Journal Of Urology, 40(3), 337-345.
  • [28] Sonka, M., et al. (2008). Image processing, analysis, and machine vision. 3rd ed. Cengage Learning.
  • [29] Byrd, R.H., et al. (1988). Approximate Solution of the Trust Region Problem by Minimization over Two Dimensional Subspaces. Mathematical Programming, 40, 247-263.
  • [30] Lagarias, J.C., et al. (1998). Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization, 9(1), 112-147.
  • [31] Zhang, Y., et al. (2008). Medical image segmentation using new hybrid level-set method. Proc. of BioMedical Visualization MEDIVIS'08 IEEE, 71-76.
  • [32] Skalski, A., et al. (2017). Kidney segmentation in CT data using hybrid Level-Set Method with ellipsoidal shape constraints. Metrol. Meas. Syst., 24(1), 101-112.
  • [33] Dice, L. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302.
  • [34] Huttenlocher, D.P., et al. (1993). Comparing images using the Hausdorff distance. IEEE Tran. on Pattern Analysis and Machine Intelligence, 15(9), 850-863.
  • [35] Dubuisson, M.P., et al. (1994). A modified Hausdorff distance for object matching. Proc. of International Conference on Pattern Recognition, 566-568.
  • [F1] https://en.wikipedia.org/wiki/Kidney#/media/File:KidneyStructures_PioM.svg.
Uwagi
EN
The work was supported by the Ministry of Science and Higher Education, Poland (statutory activity no. 11.11.120.774, Dean Grant no. 15.11.120.889). We would like to thank prof. Henry Rusinek for sharing the application FireVoxel containing the EdgeWave algorithm (https://wp.nyu.edu/firevoxel/) and valuable comments facilitating its handling.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8510c56a-7018-4cda-b5b5-ad3ac1ee9bae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.