PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Accuracy problem of modeling in a gas turbine cycle with heat regeneration according to Szewalski’s idea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, authors undertook a problem of accuracy and exactness verification of some assumptions and calculation methods that are important in the 0D modeling. The computational flow mechanics (CFM) tools and basic calculations of gas turbine cycle with heat regeneration according to Szewalski’s idea have been done. Results and conclusions for this specific problem have been presented. Gas turbine cycle with heat regeneration according to Szewalski’s idea includes regeneration as same as it is now commonly employed in steam turbine cycles. Mentioned regeneration is enabled by adding to the simple cycle devices configuration of two regenerative heat exchangers and auxiliary compressor. That modification allows to obtain working medium circulation in closed cycle inside a basic cycle. Efficiency gain is dependent on extraction pressure and extraction mass flow rate.
Rocznik
Tom
Strony
77--109
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union L334/17 17.12.2010.
  • [2] Cheng D.: Regenerative Parallel Compound Dual–fluid Heat Engine. US PATENT 1978 No. 4128994.
  • [3] Cheng D.: The distriction between Cheng and STIG cycle. Proc. ASME EXPO GT–2006–90382 (2006).
  • [4] Jesionek K., Chrzczonowski A., Badur J., Lemański A.: On the parametric analysis of performance of advanced Cheng cycle. Scientific Papers of the Faculty of Applied Mechanics, Vol. 23, Silesian University of Technology, Gliwice 2004 (in Polish).
  • [5] Ziółkowski P., Lemański M, Badur J., Nastałek L.: Power augmentation of PGE Gorzow’s gas turbine by steam injection – thermodynamic overview. Rynek Energii 98(2012), 1, 161–167 (in Polish).
  • [6] Jesionek K., Chrzczonowski A., Ziółkowski P., Badur J.: Enhancement of the Brayton cycle efficiency by water or steam utilization. Transactions IFFM 124(2012), 93–109.
  • [7] Szewalski R.: A method of increasing the energy efficiency of the gas turbine cycle. Opis patentowy 77154 (1973).
  • [8] Badur J.: Development of Energy Concept. IMP PAN Publishers, Gdańsk 2009 (in Polish).
  • [9] Ziółkowski P., Lemański M., Badur J., Zakrzewski W.: Increase efficiency gas turbine by use the Szewalski idea. Rynek Energii 100(2012), 3, 63–70.
  • [10] Pawlik M., Kotlicki T.: Combined gas-steam cycles in power engineering. In: Proc. Conf. on Thermal Power Plants, Słok 2001, 53–64, (in Polish).
  • [11] Wołoncewicz Z., Buraczewski J.: Experience of exploitation of gas–steam cycle in EC Gorzów S.A. 1999-2003. In: Proc. Conf. on Gas and Gas–steam Power and CHP Plants, Poznań, Kierz 2003.
  • [12] PGEGiEK’s Gorzów Power Plant web site. Available at: http://www. ecgorzow.pgegiek.pl
  • [13] Harasgama S., Kreitmeier F.: A new uprated turbine for GT8 and GT8C gas turbine family. In: Proc. Int. Gas Turbine and Aeroengine Cong. and Exposition, The Hague 1994.
  • [14] Ziółkowski P., Badur P.: Clean Gas technologies – towards zeroemission repowering of Pomerania. Transactions IFFM 124(2012), 51– 80.
  • [15] Ziółkowski P.: Numerical analysis of exploitation conditions of Gorzów CHP cycle before and after modernization. MSc thesis. Gdańsk University of Technology, Gdańsk 2011.
  • [16] Poullikkas A.: An overview of current and future sustainable gas turbine technologies. Renew. Sust. Energ. Rev. 9(2005).
  • [17] Chmielniak T.: Power Technologies. WNT, Warsaw 2008 (in Polish).
  • [18] Perycz S.: Steam and Gas Turbines. Publishing House of Gdańsk University of Technology, Gdańsk 1988 (in Polish).
  • [19] Skorek J., Kalina J.: Gas Turbines Cogeneration Units. WNT, Warsaw 2005 (in Polish).
  • [20] Carapellucci R., Milazzo A.: Repowering combined cycle power plants by a modified STIG configuration. Energ. Convers. Manage. 48(2007), 5, 1590–1600.
  • 21] Jonson M., Yan J.: Humidified gas turbine – a review of proposed and implemented cycles. Energy 30(2005), 7, 1013–1078.
  • [22] Veyo S. L.: Status of pressurized SOFC/GAS turbine power system development of Siemens Westinghouse. In: Proc. ASME Turbo Expo 2002 GT–2002–30670 2002, 1–7.
  • [23] Lemański M: Analyses of thermodynamic cycles with fuel cells and gas–steam turbine. PhD thesis, The Szewalski Institute of Fluid-Flow Machinery PASci, Gdańsk 2007 (in Polish).
  • [24] Lemański M., Karcz M.: Performance of lignite–syngas operated tubular Solid Oxide Fuell Cell. Chem. Process Eng. 23(2007), 1–24.
  • [25] Ziółkowski P.,Zakrzewski W., Kaczmarczyk O., Badur J.: Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2. Arch. Thermodyn. 34(2013), 2, 23–38.
  • [26] Topolski J.: Combustion diagnosis in combined gas-steam cycle. PhD thesis, The Szewalski Institute of Fluid-Flow Machinery PASci Gdańsk 2002.
  • [27] Lemański M., Topolski J., Badur J.: Analysis strategies for gas turbine– Solid Oxide Fuel Cell hybrid cycles, Technical, economic and environmental aspects of combined cycle power plants. Gdańsk University of Technology, Gdańsk 2004, 213–220.
  • [28] Głuch J.: Selected problems in determining an efficient operation standard in contemporary heat and flow diagnostics. Pol. Marit. Res., S1(2009), 22–27.
  • [29] Bartela Ł., Skorek-Osikowska A., Kotowicz J.: Integration of supercritical coal–fired heat and power plant with carbon capture installation and gas turbine. Rynek Energii 100(2012), 3, 56–62.
  • [30] Bartela Ł., Skorek-Osikowska A., Kotowicz J.: Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical CHP plant integrated with a corbon capture installation. Energ. Convers. Manage. 85(2014), 750–763.
  • [31] Ziółkowski P., Hernet J., Badur J.: Revalorization of the Szewalski binary vapour cycle. Arch. Thermodyn. 35(2014), 3, 225–249.
  • [32] Topolski J., Badur J.: Efficienncy of HRSG within a combined cycle with gasification and sequential combustion at GT26 turbine. In: Proc. COMPOWER.2000 (2000), 291–298.
  • [33] Topolski J., Lemański M., Badur J.: Mathematical model of high temperature fuel cell SOFC by COM-GAS code. In: Proc. Conf. on Research Problems of Thermal Energy, Warsaw 2003 (in Polish).
  • [34] Topolski J., Badur J.: Comparison of the combined cycle efficiencies with different heat recovery steam generators. Transactions IFFM 111(2002), 5–16.
  • [35] Wiśniewski A., Topolski J., Badur J.: More efficient gas-steam power plant topped by a LiBr absorption chiller, Technical, economic and environmental aspects of combined cycle power plants. Gdańsk University of Technology, Gdańsk 2004, 183–192.
  • [36] Lemańśki M., Badur J..: Parametrical analysis of a tubular pressurized SOFC. Arch. Thermodyn. 25(2004), 53–72.
  • [37] Kaczmarczyk O.: Compressor heat pump characteristics. Contemporary technologies and energy conversion, Gdańsk 2011 (in Polish).
  • [38] Kowalczyk T., Badur J.: Logistical aspects of energy conversion efficiency in marine steam power plants in off-design conditions. Logistyka 6(2014), 4, 4510–4517 (CD-ROM).
  • [39] Kniter D., Badur J.: Coupled analysis 0D and 3D for an axial force. Systems 13(2008), Spec. Iss. 1/2, 244–262.
  • [40] Nastałek L., Karcz M., Sławiński D., Zakrzewski W., Ziółkowski P., Szyrejko C., Topolski J., Werner R., Badur J.: On the efficency of a turbine stage; classical and CFD definitions. Transactions IFFM 124(2012), 17–39.
  • [41] Wettstein H.: The potential of GT combined cycles for ultra high efficiency. In: Proc. Proc. ASME Turbo Expo 2012, Copenhagen 2012, GT2012–68586.
  • [42] Kosowski K., Banaszkiewicz M., Domachowski Z., Ferdyn Z., Gardzielewicz A., Ghaemi H., Głuch J., Kietliński K., Kosowski A., Lampart P., Łuniewicz B., Obrzut D., Piwowarski M., Próchnicki M., Stępień R., Szyrejko C., Topolski J., Tucki K., Włodarski W.: Steam and Gas Turbines with examples of Alstom technology. ALSTOM, Elbląg 2007.
  • [43] Piotrowski R., Ziółkowski P.: Advanced thermodynamic analysis of gas turbine cycle. Rep. IFFM PASci, 862/2014, Gdańsk 2014 (in Polish).
  • [44] Boyce M.P.: Gas turbine engineering handbook. Gulf Proffesional Publishing, Houston 2002.
  • [45] Pawlik M., Strzelczyk F..: Power Plants. WNT, Warsaw 2009 (in Polish).
  • [46] Badur J.: Numerical modeling of sustainable combustion in gas turbines. Ref. IFFM PASci, Gdańsk 2003 (in Polish).
  • [47] Gundlach., Czarnecki S., Kaczan B.: Entropy Diagrams for Air, Flue Gases and Gasification Products. Ossolineum, Wrocław 1990 (in Polish).
  • [48] Pudlik W.: Technical Thermodynamics. Publishing House Gdańsk University of Technology, Gdańsk 1998 (in Polish).
  • [49] Jarociński J.: Clean Combustion Technology. WNT, Warsaw 2008 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-850f56d6-c5cd-4658-adca-8c6aaf0bb982
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.