PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enancjoselektywna enzymatyczna desymetryzacja katalizowana lipazami. Część II, Optymalizacja warunków reakcji. Związki mezo

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Enantioselectve enzymatic desymmetrization catalyzed in the presence of lipase. Part II, Optymalization of reaction conditions. Meso compounds
Języki publikacji
PL
Abstrakty
EN
In the enzymatic asymmetric synthesis, the enzyme allows the desymmetrization of achiral compounds resulting in chiral compounds of high optical purity. Meso compounds (bearing a plane of symmetry) are very important group of compounds used in EEDs (Scheme 1) [1–4]. Similarly to prochiral compounds, selective acylation or hydrolysis of meso substrates leads to optically active products. Most lipases preferentially convert the same enantiomers in the above mentioned types of reaction. This allows the preparation of the both enantiomers of the product in high chemical and optical yield (Scheme 3–20) [35–58]. An effective enzymatic catalysis should be performed under conditions optimal for a biocatalyst performance. Hence, it is essential to select an appropriate reaction medium, the pH, and temperature [6–34]. Optimization of the reaction conditions in terms of an appropriate solvent selection is effective and most frequently the simplest way to modify the enzyme selectivity. One of the most important criteria for the solvent selection is its nature [25]. The enzyme selectivity is conditioned by its conformational rigidity, which increases in more hydrophobic medium (typical hydrophobic solvents, scCO2). A hydrophobic solvent decreases biocatalyst lability, which does not allow the connection between the structurally mismatched substrate and the active side of an enzyme [10, 26–31]. Ionic liquids are a separate group of solvents which, despite their high hydrophobicity (logP << 0) and polarity, can constitute an ideal medium for the biotransformation reactions [18–23].
Rocznik
Strony
819--841
Opis fizyczny
Bibliogr. 58 poz., schem
Twórcy
  • Katedra i Zakład Chemii Ogólnej, Collegium Medicum w Bydgoszczy UMK Toruń ul. Dębowa 3, 85-626 Bydgoszcz
  • Katedra i Zakład Chemii Ogólnej, Collegium Medicum w Bydgoszczy UMK Toruń ul. Dębowa 3, 85-626 Bydgoszcz
  • Katedra Chemii Organicznej, UMK Toruń ul. Gagarina 7, 87-100 Toruń
autor
  • Katedra i Zakład Chemii Ogólnej, Collegium Medicum w Bydgoszczy UMK Toruń ul. Dębowa 3, 85-626 Bydgoszcz
Bibliografia
  • [1] E. Garcia-Urdiales, I. Alfonso, V. Gotor, Chem. Rev., 2005, 105, 313.
  • [2] Ch.-S. Chen, Y. Fujimoto, Ch. J. Sih, J. Am. Chem. Soc., 1981, 103, 3580.
  • [3] K. Faber, Biotransformations in organic chemistry, Springer, Berlin, 1992.
  • [4] V. Gotor, I. Alfonso, E. Garcia-Urdiales, Asymmetric organic synthesis with enzymes, Willey-VCH., Weinheim, 2008.
  • [5] J.B. Jones, M.M. Mehes, Canadias Journal of Chemistry, 1979, 57, 2245.
  • [6] L.K.P. Lam, R.A. Hui, J.B. Jones, J. Org. Chem., 1986, 51, 2047.
  • [7] A. Zaks, A. M. Klibanov, Proc. Natl. Acad. Sci. USA, 1985, 82, 3192.
  • [8] A. Klibanov, Ace. Chem. Res., 1990, 23, 114.
  • [9] A. Zaks, A.M. Klibanov, The Journal of Biological Chemistry, 1988, 263, 8017.
  • [10] G. Colombo, G. Ottolino, G. Carrea, Monatshefte fur Chemie, 2000, 131, 527.
  • [11] P. Trodler, J. Pleiss, BMC Structural. Biology, 2008, 8:9, 1.
  • [12] P.J. Halling, Enzyme Microb. Technol., 1994, 16, 178.
  • [13] P.J. Halling, Trends in Biotechnol., 1989, 7, 50.
  • [14] P.J. Halling, Enzyme Microb. Technol., 1984, 6, 513.
  • [15] H.L. Goderis, G. Ampe, M.P. Feyten, B.L. Fouwe, W.M. Guffenes, S.M. Van Cauwenbergh, P.P. Tobback, Biotechnology and Bioengineering, 1987, 30, 258.
  • [16] N. Jain, A. Kumar, S. Chauhan, S.M.S. Chauhan, Tetrahedron, 2005, 61, 1015.
  • [17] Z. Yang, W. Pan, Enzyme Microb. Technol., 2005, 37, 19.
  • [18] P. Lozano, T. De Diego, D. Carrie, M. Vaultier, J.L. Iborra, J. Mol. Catal. B: Enzym., 2003, 21, 9.
  • [19] P. Lozano, T. De Diego, D. Carrie, M. Vaultier, J.L. Iborra, Chem. Commun., 2002, 692.
  • [20] M.T. Reetz, W. Wiesenhofer, G. Francio, W. Leitner, Chem. Commun., 2002, 992.
  • [21] P. Lozano, T. De Diego, S. Gmouh, M. Vaultier, J.L. Iborra, Biotechnol. Prog., 2004, 20, 661.
  • [22] S. Keskin, D. Kayrak-Talay, U. Akman, O. Hortacsu, J. of Supercritical Fluids, 2007, 43, 150.
  • [23] O. Miyawaki, M. Tatsuno, J. Biosci. Bioeng., 2008, 105, 61.
  • [24] T. Mastuda, T. Harada, K. Nakamura, T. Ikariya, Tatrahedron: Asymmetry, 2005, 16, 909.
  • [25] P.A. Fitzpatrick, A.M. Klibanov, J. Am. Chem. Soc., 1991, 113, 3166.
  • [26] F. Secundo, S. Riva, G. Carrea, Tetrahedron: Asymmetry, 1992, 3, 267.
  • [27] Y. Hirose, K. Kariya, J. Sasaki, Y. Kurono, H. Ebike, K. Achiwa, Tetrahedron Letters, 1992, 33, 7157.
  • [28] K. Nakamura, J. Takebe, T. Kitayama, A. Ohno, Tetrahedron Letters, 1991, 32, 4941.
  • [29] K. Nakamura, M. Kinoshita, A. Ohno, J. Am. Chem. Soc., 1992, 114, 8799.
  • [30] S. Tawaki, A. M. Klibanov, J. Am. Chem. Soc., 1992, 1143, 1882.
  • [31] J. Ottosson, L. Fransson, J. W. King, K. Hult, Biochimica and Biophysica Acta, 2002, 1574, 325.
  • [32] J. Kohler, B. Wunsch, Tetrahedron: Asymmetry, 2006, 17, 3091.
  • [33] R.S. Phillips, Enzyme Microb. Technol., 1992, 14, 417.
  • [34] R.S. Phillips, Trends Biotechnol., 1996, 14, 13.
  • [35] R. Chenevert, Courchesne, G.; Caron, D. Tetrahedron: Asymmetry, 2003, 14, 2567.
  • [36] R . Chenevert, Y. S. Rose, J. Org. Chem. 2000, 65, 1707.
  • [37] P. Davoli, E. Caselli, M. Bucciarelli, A. Forni, G. Torre, F. Prati, J. Chem. Soc., Perkin Trans. 1, 2002, 1948.
  • [38] R. Chenevert, F. Jacques, P. Giguere, Dasser M., Tetrahedron: Asymmetry, 2008, 19, 1333.
  • [39] K. Toyama, S. Iguchi, H. Sakazaki, T. Oishi, M. Hirama, Bull. Chem. Soc. Jpn., 2001, 74, 997.
  • [40] R. Chenevert, D. Goupil, Y.S. Rose, E. Bedard, Tetrahedron: Asymmetry, 1998, 9, 4285.
  • [41] M. Candy, G. Aundran, H. Bienayme, C. Bressy, J.-M. Pons, Org. Lett., 2009, 11, 4950.
  • [42] R. Chenevert, G.M. Ziarani, M.P. Morin, M. Dasser, Tetrahedron: Asymmetry, 1999, 10, 3117.
  • [43] R. Chenevert, M.-P. Morin, J. Org. Chem., 1999, 64, 3178.
  • [44] H. Hilpert, B. Wirz, Tetrahedron, 2001, 57, 681.
  • [45] B. Wirz, H. Iding, H. Hilpert, Tetrahedron: Asymmetry, 2000, 11, 4171.
  • [46] Y. Zhao, Y. Wu, P. De Clerq, M. Vandewalle, P. Maillos, J.-C. Pascal, Tetrahedron: Asymmetry, 2000, 11, 3887.
  • [47] R. Chenevert, P. Morin, Bioorg. Med. Chem., 2009, 17, 1837.
  • [48] T. Matsumoto, T. Konegawa, H. Yamaguchi, T. Nakamura, T. Sugai, K. Suzuki, Synlett., 2001, 1650.
  • [49] R. Chenevert, C. Levesque, P. Morin, J. Org. Chem., 2008, 73, 9501.
  • [50] T. Oishi, M. Maruyama, M. Shoji, K. Maeda, N. Kumahara, S.-I. Tanaka, M. Hirama, Tetrahedron, 1999, 55, 7471.
  • [51] D.B. Berkowitz, S. Choi, J.H. Maeng, J. Org. Chem. 2000, 65, 847.
  • [52] K. Hegemann, H. Schimanski, U. Howeler, G. Haufe, Tetrahedron Lett., 2003, 44, 2225.
  • [53] G. Coste, S. Gerber-Lemaire, Tetrahedron: Asymmetry, 2005, 16, 2277.
  • [54] A. Michaud, C. Levesque, M. Fila, P. Morin, N. Pelchat, R. Chenevert, Tetrahedron: Asymmetry, 2011, 22 ,919.
  • [55] C. Tanyeli, T. Karadağ, A. Mecitoğlu, Tetrahedron: Asymmetry, 2004, 15, 307.
  • [56] N.W. Boaz, Tetrahedron: Asymmetry, 1999, 10, 813.
  • [57] A. Goswani, T.P. Kissick, Organic Process Research & Development, 2009, 13, 483.
  • [58] Y. Kashima, J. Liu, S. Takenami, S. Niwayama, Tetrahedron: Asymmetry 2002, 13, 953.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-850a8c4a-7afb-4adf-8a90-3023a28917b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.