PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental and numerical analysis of vortex generators designed for utility vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of today’s car designers is to minimize fuel consumption in all possible ways at the same time maintaining the vehicle’s performance as usual. The goal of this work is to study the effect of adding a vortex generator (VG) on the aerodynamics of the vehicle and fuel economy. Both theoretical and experimental works were carried out and the outcomes of the numerical simulations are contrasted with those of the experimental results. A utility vehicle model with a scale ratio of 1:15 was used as a test model. Experimental research has been done on the fluctuation of the coefficient of pressure, dynamic pressure, and coefficients of lift and drag with and without VG on the roof of a utility vehicle. The delta-shaped VG was put to the test both numerically and experimentally. At a velocity of 2.42 m/s, it is observed that the addition of VG can raise the pressure coefficient by about 17%. When compared to the vehicle model without vortex generators, the velocity profile of the ccomputational fluid dynamics analysis shows that at the back end of the vehicle, the wake has been minimized with VG.
Rocznik
Strony
217--240
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Vellore Institute of Technology, Automotive Research Centre, Vellore – 632014, India
autor
  • Vellore Institute of Technology, CO2 Research and Green Technologies Center, Vellore – 632014, India
  • Anna University, Department of Automobile Engineering, BIT Campus, Tiruchirappalli, 620024, India
  • VIT Bhopal University, Bhopal, 466114, India
Bibliografia
  • [1] Lishu H., Bao H., Yongwei G., Binbin W.: Effect of vortex generator spanwise height distribution pattern on aerodynamic characteristics of a straight wing. Adv. Aerodyn. 5(2023), 1, 1–15. doi: 10.1186/s42774-023-00137-1
  • [2] Nilavarasan T, Joshi G.N., Misra A., Manisankar C., Verma S.B.: Spatial and temporal alterations due to vortex generators in a flare induced shock–boundary layer interaction. Eur. J. Mech. B-Fluid. 99(2023), 3, 98–115. doi: 10.1016/j.euromechflu.2023.01.007
  • 3] Jana T., Kaushik M.: Survey of control techniques to alleviate repercussions of shock-wave and boundary-layer interactions. Adv. Aerodyn. 27(2022), 4, 1–30. doi: 10.1186/s42774-022-00119-9
  • [4] Kung M.C., Kao C.S., Keh C.C.: The effect of vortex generators on shock-induced boundary layer separation in a transonic convex-corner flow. Aerospace 157(2021),8, 1–11. doi: 10.3390/aerospace8060157
  • [5] Hadi B., Seyed Ali A.M., Seyed Amir A.O., Mohammad R.S.: Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation. Acta Astronaut. 178(2021), 1, 616–624. doi: 10.1016/j.actaastro.2020.08.012
  • [6] Neeraj K.G., Nirmal K.S.: Control of shock-induced separation inside air intake by vortex generators. Heat Transfer 51(2022), 1, 766–788. doi: 10.1002/htj.22329
  • [7] Azam C.I., Mohd R.S., Konstantinos K.: Potential of micro-vortex generators in enhancing the quality of flow in a hypersonic inlet-isolator. J. Adv. Res. Fluid Mech. Therm. Sci. 77(2021), 1, 1–10. doi: 10.37934/arfmts.77.1.110
  • [8] Tian L., Hao L., Jie Z., Jiye Z.: Numerical study on aerodynamic resistance reduction of high-speed train usingvortex generator. Eng. Appl. Comput. Fluid Mech. 17(2023),1, 1–17. doi: 10.1080/19942060.2022.2153925
  • [9] Arunvinthan S., Raatan V.S., Nadaraja Pillai S., Amjad A.P., Rahman M.M, Khalid A.J.: Aerodynamic characteristics of shark scale-based vortex generators upon symmetrical airfoil. Energies 14(2021), 1808, 1–22. doi: 10.3390/en14071808
  • [10] Gnatowska R., Gajewska K., Kańtoch R.: Numerical calculations of VGs influence on aerodynamic characteristics of airfoil. Acta Phys. Pol. A 139(2021), 5, 1, 586–589. doi: 10.12693/APhysPolA.139.586
  • [11] Tavernier D., Ferreira C., Viré A., LeBlanc B., Bernardy S.: Controlling dynamic stall using vortex generators on a wind turbine airfoil. Renew. Energ. 172(2021), 7,1194–1211. doi: 10.1016/j.renene.2021.03.019
  • [12] Wu Z., Chen T., Wang H., Shi H.: Investigate aerodynamic performance of wind turbine blades with vortex generators at transition area. Wind Eng. 46(2022), 615629. doi: 10.1177/0309524X211038542
  • [13] Reza B., Milad R., Mohammad R.S.: Numerical simulations of spoiler’s effect on a hatchback and a sedan car exposed to crosswind effect. J. Appl. Comput. Mech. 9(2023), 2, 346–356. doi: 10.22055/JACM.2021.36955.2937
  • [14] Viswanathan H.: Aerodynamic performance of several passive vortex generator configurations on an Ahmed body subjected to yaw angles. J. Braz. Soc. Mech. Sci. Eng.43(2021), 2, 1–23. doi: 10.1007/s40430-021-02850-8
  • [15] Popp M., White C.F., Bernal D., Wainwright D.K., Lauder G.V.: The denticle surface of thresher shark tails: Three-dimensional structure and comparison to other pelagic species. J. Morphol. 281(2020), 6, 938–955. doi: 10.1002/jmor.21222
  • [16] SAE: Wind tunnel test procedure for trucks and buses, Recommended practice. SAE J. 1252_201207(2012).
  • [17] Li X., Yang K.,.Wang X.: Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance. Energies 12(2019), 5, 1–19. doi: 10.3390/en12050959
  • [18] Szwaba R., Hinc K., Ochrymiuk T., Krzemianowski Z., Doerffer P., Kurowski M.: Open low speed wind tunnel – design and testing. Arch. Thermodyn. 42(2021), 1,57–70. doi: 10.24425/ather.2021.136947
  • [19] Barlow J.B., Rae Jr. W.H., Pope A.: Low-Speed Wind Tunnel Testing (3rd Edn.). Wiley, 2010.
  • [20] Koprowski A., Rzadkowski R.: Computational fluid dynamics analysis of 1 MW steam turbine inlet geometries. Arch. Thermodyn. 42(2021), 1, 35–55. doi: 10.24425/ather.2021.136946
  • [21] Pazouki A., Radu S., Dan N.: A high performance computing approach to the simulation of fluid-solid interaction problems with rigid and flexible component. Arch. Mech. Eng. 61(2014), 2, 227–251. doi: 10.2478/meceng-2014-0014
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8507c337-1d50-4f81-aac3-9999dd214420
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.