PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to build and validate a class of energy-preserving schemes for simulating a complex modified Korteweg–de Vries equation. The method is based on a combination of a discrete variational derivative method in time and finite volume element approximation in space. The resulting scheme is accurate, robust and energy-preserving. In addition, for comparison, we also develop a momentum-preserving finite volume element scheme and an implicit midpoint finite volume element scheme. Finally, a complete numerical study is developed to investigate the accuracy, conservation properties and long time behaviors of the energy-preserving scheme, in comparison with the momentum-preserving scheme and the implicit midpoint scheme, for the complex modified Korteweg–de Vries equation.
Rocznik
Strony
515--525
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics and Computing, Wuyi University, Fujian, 354300, China
autor
  • Department of Information and Technology, Nanping No. 1 Middle School, Fujian, 353000, China
Bibliografia
  • [1] Bank, R.E. and Rose, D.J. (1987). Some error estimates for the box methods, SIAM Journal on Numerical Analysis 24(4): 777–787.
  • [2] Cai, J.X. and Miao, J. (2012). New explicit multisymplectic scheme for the complex modified Korteweg–de Vries equation, Chinese Physics Letters 29(3): 030201.
  • [3] Cai, Z.Q. (1991). On the finite volume element method, Numerische Mathematik 58(7): 713–735.
  • [4] Costa, R., Machado, G.J. and Clain, S. (2015). A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation, International Journal of Applied Mathematics and Computer Science 25(3): 529–537, DOI: 10.1515/amcs-2015-0039.
  • [5] Erbay, H.A. (1998). Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg–de Vries equation, Physica Scripta 58(1): 9–14.
  • [6] Erbay, S. and Suhubi, E.S. (1989). Nonlinear wave propagation in micropolar media. II: Special cases, solitary waves and Painlev´e analysis, International Journal of Engineering Science 27(8): 915–919.
  • [7] Ewing, R., Lin, T. and Lin, Y. (2000). On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM Journal on Numerical Analysis 39(6): 1865–1888.
  • [8] Furihata, D. and Matsuo, T. (2010). Discrete Variational Derivative Method: A Structure-Preserving Numerical Method For Partial Differential Equations, CRC Press, London.
  • [9] Furihata, D. and Mori, M. (1996). A stable finite difference scheme for the Cahn–Hilliard equation based on the Lyapunov functional, Zeitschrift fur Angewandte Mathematik und Mechanik 76(1): 405–406.
  • [10] Gorbacheva, O.B. and Ostrovsky, L.A. (1983). Nonlinear vector waves in a mechanical model of a molecular chain, Physica D 8(1–2): 223–228.
  • [11] Hackbusch, W. (1989). On first and second order box schemes, Computing 41(4): 277–296.
  • [12] Ismail, M.S. (2008). Numerical solution of complex modified Korteweg–de Vries equation by Petrov–Galerkin method, Applied Mathematics and Computation 202(2): 520–531.
  • [13] Ismail, M.S. (2009). Numerical solution of complex modified Korteweg–de Vries equation by collocation method, Communications in Nonlinear Science and Numerical Simulation 14(3): 749–759.
  • [14] Karney, C.F.F., Sen, A. and Chu, F.Y.F. (1979). Nonlinear evolution of lower hybrid waves, Physics of Fluids 22(5): 940–952.
  • [15] Koide, S. and Furihata, D. (2009). Nonlinear and linear conservative finite difference schemes for regularized long wave equation, Japan Journal of Industrial and Applied Mathematics 26(1): 15–40.
  • [16] Korkmaz, A. and Dağ, I. (2009). Solitary wave simulations of complex modified Korteweg–de Vries equation using differential quadrature method, Computer Physics Communications 180(9): 1516–1523.
  • [17] Li, R.H., Chen, Z.Y. and Wu,W. (2000). Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker Inc., New York, NY.
  • [18] Matsuo, T. and Furihata, D. (2001). Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations, Journal of Computational Physics 171(2): 425–447.
  • [19] Matsuo, T. and Kuramae, H. (2012). An alternating discrete variational derivative method, AIP Conference Proceedings 1479: 1260–1263.
  • [20] Miyatake, Y. and Matsuo, T. (2014). A general framework for finding energy dissipative/conservative H1-Galerkin schemes and their underlying H1-weak forms for nonlinear evolution equations, BIT Numerical Mathematics 54(4): 1119–1154.
  • [21] Muslu, G.M. and Erabay, H.A. (2003). A split-step Fourier method for the complex modified Korteweg–de Vries equation, Computers & Mathematics with Applications 45(1): 503–514.
  • [22] Uddin, M., Haq, S. and Islam, S.U. (2009). Numerical solution of complex modified Korteweg–de Vries equation by mesh-free collocation method, Computers & Mathematics with Applications 58(3): 566–578.
  • [23] Wang, Q.X., Zhang, Z.Y., Zhang, X.H. and Zhu, Q.Y. (2014). Energy-preserving finite volume element method for the improved Boussinesq equation, Journal of Computational Physics 270: 58–69.
  • [24] Yaguchi, T., Matsuo, T. and Sugihara, M. (2010). An extension of the discrete variational method to nonuniform grids, Journal of Computational Physics 229(11): 4382–4423.
  • [25] Yan, J.L., Zhang, Q., Zhu, L. and Zhang, Z.Y. (2016). Two-grid methods for finite volume element approximations of nonlinear Sobolev equations, Numerical Functional Analysis and Optimization 37(3): 391–414.
  • [26] Zhang, Z.Y. and Lu, F.Q. (2012). Quadratic finite volume element method for the improved Boussinesq equation, Journal of Mathematical Physics 53(1): 013505.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8507229a-869c-4231-80a5-1fea2f4859a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.