PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the tensile process energy consumption of coniferous wood exposed to seawater

Autorzy
Identyfikatory
Warianty tytułu
PL
Analiza energochłonności procesu rozciągania drewna iglastego poddanego działaniu wody morskiej
Języki publikacji
EN
Abstrakty
EN
The woodworking industry is notorious for its use of wood, despite the availability of laminates and other sub-materials. In the marine industry, it is used in the construction of boats, yachts, and other marine structures. In this study, tensile properties of coniferous species were examined as a function of salty water exposure for different periods of time. In coniferous woods such as pine, larch, and spruce, wood strength is determined by its ability to undergo tension and compression over time. Different mechanical strengths of wood soaked in water with a salinity of 7‰ were determined. According to the data, the salinity value corresponds to the average salinity on the Polish Baltic coast. As a result of the experiments, it can be concluded that the applied medium directly affects the species and structure of the wood. The parameters of wood are affected differently by soaking depending on its species. The tensile strength of pine was enhanced after incubation in seawater. By soaking other specimens in saltwater for a certain period of time, the study demonstrated different strength parameters. Wood exposed to salty water was compared to native wood in this study to determine its tensile properties. In conclusion, soaking wood in a certain medium significantly alters its mechanical properties. Analysis showed that all samples had an average strength between 5.4MPa and 102.04MPa. There was a slight difference in strength results for each wood species over time despite subsequent treatment cycles.
PL
Zbadano właściwości rozciągające gatunków drzew iglastych w funkcji ekspozycji na słoną wodę przez różne okresy czasu. Określono różne wytrzymałości mechaniczne drewna nasączonego wodą o zasoleniu 7‰, które odpowiadało średniemu zasoleniu na polskim wybrzeżu Bałtyku. Stwierdzono, że zastosowane medium wpływa bezpośrednio na gatunek i strukturę drewna. Nasączanie wpływa w różny sposób na parametry drewna w zależności od jego gatunku. Wytrzymałość na rozciąganie sosny została zwiększona po inkubacji w wodzie morskiej. W badaniach wykazano odmienne parametry wytrzymałościowe, mocząc różne próbki w słonej wodzie przez pewien czas. Drewno wystawione na działanie słonej wody porównano z drewnem naturalnym, aby określić jego właściwości rozciągające. Namoczenie drewna w określonym medium znacząco zmienia jego właściwości mechaniczne. Analiza wykazała, że wszystkie próbki miały średnią wytrzymałość 5,4–102,04 MPa. Zaobserwowano niewielką różnicę w wynikach wytrzymałości dla każdego gatunku drewna w czasie, pomimo kolejnych cykli obróbki.
Rocznik
Strony
12--22
Opis fizyczny
Bibliogr. 33 poz., tab., fig.
Twórcy
autor
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Science, Warszawa
Bibliografia
  • [1] Gerlach T.: Volcanic versus anthropogenic carbon dioxide. Eos (Washington DC) 92 (2011) 201, doi:10.1029/2011EO240001.
  • [2] Elam J., Björdal C.G.: Long-term study on wood degradation in urban soil-water systems – implications for service life of histo ric foundation piles. Int. Biodeter. Biodegr. 167 (2022) 105356, doi:10.1016/j.ibiod.2021.105356.
  • [3] Roman K., Grzegorzewska E., Leszczyński M., Pycka S., Barwicki J., Golisz E., Zatoń P.: Effect of seawater with average salinity on the moisture content, ash content and tensile strength of some coniferous wood. Materials 16 (2023), doi:10.3390/ma16082984.
  • [4] Roman K., Leszczyński M., Pycka S., Wardal W.J.: The effects of seawater treatment on selected coniferous wood types. Mate rials 16 (2023), doi:10.3390/ma16175831.
  • [5] Øyen B.-H., Nyeggen H., Flæte P.O.: Bending stiffness and strength of 300 year old salt(NaCl)-exposed wood from Bryggen in Bergen, Norway. In Proceedings of the International Confe rence on Wood Science for Preservation of Cultural Heritage: Mechanical and Biological Factors, Braga, Portugal, 5–7 Novem ber 2008.
  • [6] Treu A., Zimmer K., Brischke C. et al.: Timber in marine envi ronments. BioResources 14 (04) (2019) 10161, doi:10.15376/ biores.14.4.Treu..
  • [7] Yildiz U.C., Temiz A., Gezer E.D., Yildiz S.: Effects of the wood preservatives on mechanical properties of ellow pine (Pinus sylvestris L.) wood. Build Environ. 39 (2004) 1071, doi: https:// doi.org/10.1016/j.buildenv.2004.01.032.
  • [8] Negro M.J., Manzanares P., Oliva J.M., Ballesteros I., Ballesteros M.: Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenergy 25 (2003) 301, doi: 10.1016/S0961-9534(03)00017-5.
  • [9] Piątek M., Bartkowiak A.: Effectiveness of using physical pretre atment of lignocellulosic biomass. J. Water Land Develop. (2023) 62, doi: 10.24425/jwld.2023.146598.
  • [10] Du Y., Doudak G., Mohareb M.: Effect of beam-deck connec tion flexibility on lateral torsional buckling strength of wooden twin-beams. Eng. Struct. 207 (2020) 110226, doi: https://doi. org/10.1016/j.engstruct.2020.110226.
  • [11] Amer M., Kabouchi B., Rahouti M., Famiri A., Fidah A., El Alami S.: Influence of moisture content on the axial resistance and modu lus of elasticity of clonal eucalyptus wood. Mater. Today Proc. 13 (2019) 562, doi: https://doi.org/10.1016/j.matpr.2019.04.014.
  • [12] Fu Q., Xu R., Kasal B., Wei Y., Yan L.: Moisture-induced stresses and damage in adhesively bonded timber-concrete compo site connection. Constr. Build. Mater. 416 (2024) 135184, doi: 10.1016/j.conbuildmat.2024.135184.
  • [13] Al-Musawi H., Huber C., Gusenbauer C., Ungerer B., Grabner M., Ploszczanski L., Schönbauer B., Painer J., Krenke T., Müller U.: The compressive behaviour of beech and birch at different moisture and temperature conditions along the grain. Eng. Fail. Anal. 159 (2024) 108017, doi: https://doi.org/10.1016/j.engfaila nal.2024.108017.
  • [14] Östman B.A.-L.: Wood tensile strength at temperatures and moisture contents simulating fire conditions. Wood Sci. Technol. 19 (1985) 103, doi: 10.1007/BF00353071.
  • [15] Żmuda E., Radomski A.: Swelling and water resistance of black poplar wood (Populus nigra L.) modified by polymerisation in lumen with styrene. Ann. Wars. Univ. Life Sci., For. Wood Technol. 110 (2020) 35, doi: 10.5604/01.3001.0014.3679.
  • [16] Murata K., Nagai H., Nakano T.: Estimation of width of fractu re process zone in spruce wood by radial tensile test. Mech. Mater. 43 (2011) 389, doi: https://doi.org/10.1016/j.mech mat.2011.04.005.
  • [17] Nylen J., Sheehan M.: The impact of moisture on lead con centrate powder dust emissions in ship-loading operations. Powder Technol. 394 (2021) 353, doi: https://doi.org/10.1016/j. powtec.2021.08.069.
  • [18] Chen W., Chen J., Williams K., Wheeler C.: Investigation into the ship motion induced moisture migration during seaborne coal transport. Adv. Powder Technol. 28 (2017) 3004, doi: https://doi. org/10.1016/j.apt.2017.09.011.
  • [19] Zarafsh ani H., Watjanatepin P., Lepelaar M., Verbruggen J., Ouagne P., De Luca R., Li Q., Scarpa F., Placet V., Van Acker K.: Environmental assessment of woven hemp fibre reinforced epoxy composites and potential applications in aerospace and electric scooter industries. Results Mater. 20 (2023) 100474, doi: https://doi.org/10.1016/j.rinma.2023.100474.
  • [20] Song H., Liu T., Gauvin F.: Enhancing mechanical performance of green fiber cement composites. Role of eco-friendly alkyl ketene dimer on surfaces of hemp fibers. J. Mater. Res. Technol. 28 (2024) 3121, doi: 10.1016/j.jmrt.2023.12.255.
  • [21] Koch S.M., Goldhahn C., Müller F.J. et al.: Anisotropic wood- -hydrogel composites. Extending mechanical properties of wood towards soft materials’ applications. Mater. Today Bio. 22 (2023), doi: 10.1016/j.mtbio.2023.100772.
  • [22] Yang S., Lee H., Choi G., Kang S.: Mechanical properties of hybrid cross-laminated timber with wood-based materials. Ind. Crops Prod. 206 (2023), doi: 10.1016/j.indcrop.2023.117629.
  • [23] Petryk A., Adamik P.: The guarantees of origin as a market-based energy transition mechanism in Poland. J. Water Land Develop. (2023) 11, doi: 10.24425/jwld.2023.145356.
  • [24] Lakhdari S., Kachi S., Valles V., Barbiero L., Houha B., Yameogo S., Jabrane M., Dali N.: Hydrochemical characterisation of gro undwater using multifactorial approach in Foum El Gueiss Basin, Northeastern Algeria. J. Water Land Develop. 52 (2022) 60, doi: 10.24425/jwld.2021.139944.
  • [25] Zhao J., Griffin J., Roozeboom K., Lee J., Wang D.: Lignin, sugar, and furan production of industrial hemp biomass via an integra ted process. Ind. Crops Prod. 172 (2021) 114049, doi: https://doi. org/10.1016/j.indcrop.2021.114049.
  • [26] Karri R., Lappalainen R., Tomppo L., Yadav R.: Bond quality of poplar plywood reinforced with hemp fibers and lignin-phenolic adhesives. Composites Part C: Open Access 9 (2022) 100299, doi: https://doi.org/10.1016/j.jcomc.2022.100299.
  • [27] Gruszczyński D., Szymanowski K.: Effect of thermomechanical modification of scots pine (Pinus sylvestris L.) wood on machine sanding efficiency. Ann. Wars. Univ. Life Sci., For. Wood Technol. 118 (2020) 74, doi: 10.5604/01.3001.0016.0856.
  • [28] Roman K., Barwicki J., Rzodkiewicz W., Dawidowski M.: Eva luation of mechanical and energetic properties of the forest residues shredded chips during briquetting process. Energies (Basel) 14 (2021) doi: 10.3390/en14113270.
  • [29] Roman K., Roman M., Szadkowska D., Szadkowski J., Grzego rzewska E.: Evaluation of physical and chemical parameters according to energetic willow (Salix viminalis L.) cultivation. Energies (Basel) 14 (2021), doi: 10.3390/en14102968.
  • [30] Acuña L., Martínez R., Spavento E., Casado M., Álvarez-Martínez J., O’Ceallaigh C., Harte A.M., Balmori J.-A.: Modulus of elasticity prediction through transversal vibration in cantilever beams and ultrasound technique of different wood species. Constr. Build. Mater. 371 (2023) 130750, doi: https://doi.org/10.1016/j.conbu ildmat.2023.130750.
  • [31] Marini L.J., Cavalheiro R.S., De Araujo V.A., Cortez-Barbosa J., de Campos C.I., Molina J.C., Silva D.A.L., Lahr F.A.R., Christoforo A.L.: Estimation of mechanical properties in eucalyptus woods towards physical and anatomical parameters. Constr. Build. Mater. 352 (2022), doi: 10.1016/j.conbuildmat.2022.128824.
  • [32] Jensen P., Gregory D.J.: Selected physical parameters to cha racterize the state of preservation of waterlogged archaeological wood. A practical guide for their determination. J. Archaeol. Sci. 33 (2006) 551, doi: 10.1016/j.jas.2005.09.007.
  • [33] Mascarenhas F.J.R., Dias A.M.P.G., Christoforo A.L., Simões R.M.S., Dias A.M.A.: Experimental investigation on the influen ce of microwave technology on the treatability and mechanical properties of portuguese southern blue gum wood. Case Stud. Constr. Mater. 20 (2024), doi: 10.1016/j.cscm.2023.e02698.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-85052888-eee5-45fd-8721-446e52de0ce9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.