PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of Electrical Conductivity and Reinforced Electrospun Silk Nanofibers with MWNTs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wytwarzanie jedwabnych nanowłókien z dodatkiem nanorurek węglowych
Języki publikacji
EN
Abstrakty
EN
Electrospinning is an effective technique for fabricating submicron to nanoscale fibers from synthetic polymer as well as natural proteins. In this study, multiwalled carbon nanotubes (MWNTs) were embedded via electrospinning by adding MWNTs into the spinning dope, and found to be well aligned along the fiber axis in the silk fibroin nanofibers. The morphology and microstructure of the electrospun nanofibers were characterised using a field emission scanning electron microscope (FESEM) and Transmission electron microscopy (TEM). X-ray diffraction (XRD) and TG-DTA were used to study the crystal structure of the silk/MWNTs composite nanofibres, carried out to alter the strength, toughness and electrical conductivity of silk nanofibers by adding a small amount of MWNTs. The electrospun random silk mats with 1% MWNTs had a Young’s modulus, ultimate tensile strength and strain of 107.46 ± 9.15MPa, 9.94 ± 1.2MPa and 9.25 ± 1.5%, respectively, and electrical conductivity increased to 1.2×10-4S/cm. The silk/MWNTs composite nanofibres could potentially be applied in nerve repair materials owing to their excellent mechanical properties and electrical conductivity.
PL
Za pomocą elektroprzędzenia wytworzono jedwabne nanowłókna z dodatkiem nanorurek węglowych. Zbadano wpływ nanorurek węglowych na morfologię, strukturę, właściwości mechaniczne i przewodność elektryczną j nanowłókien. Morfologię i mikrostrukturę otrzymanych nanowłókien scharakteryzowano za pomocą skaningowego mikroskopu elektronowego (FESEM) i transmisyjnej mikroskopii elektronowej (TEM). Wyniki badań rentgenowskich i cieplnych wykazały, że dodanie nanorurek nie wywierało istotnego wpływu na strukturę nanowłókien w porównaniu do niemodyfikowanych nanowłókien fibroinowych. Poprzez dodanie nanorurek uzyskano polepszenie właściwości mechanicznych, została również polepszona przewodność elektryczna nanowłókien. Na podstawie otrzymanych wyników stwierdzono, że jedwabne nanowłókna z dodatkiem nanorurek węglowych mogą być stosowane w materiałach do naprawy nerwów dzięki ich doskonałym właściwościom mechanicznym i przewodności elektrycznej.
Rocznik
Strony
40--44
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Department of Soochow University, National Engineering Laboratory for Modern Silk, Ren ai road 199, Suzhou, China
autor
  • Department of Soochow University, National Engineering Laboratory for Modern Silk, Ren ai road 199, Suzhou, China
autor
  • Department of Soochow University, National Engineering Laboratory for Modern Silk, Ren ai road 199, Suzhou, China
autor
  • Department of Soochow University, National Engineering Laboratory for Modern Silk, Ren ai road 199, Suzhou, China
Bibliografia
  • 1. Ayutsede J, Gandhi M, Sukigara S, et al. Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat. Polymer J 2005; 46(5): 1625-1634.
  • 2. Wu ZL, Zhang P, Gao MX, et al. Onepot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk–natural proteins. Journal of Materials Chemistry B J 2013; 1(22): 2868-2873.
  • 3. Wang Y, Blasioli DJ, Kim HJ, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials J 2006; 27(25): 4434-4442.
  • 4. Wang Y, Kim H J, Vunjak-Novakovic G, et al. Stem cell-based tissue engineering with silk biomaterials. Biomaterials J 2006; 27(36): 6064-6082.
  • 5. Meinel A J, Kubow KE, Klotzsch E, et al. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials J 2009; 30(17): 3058-3067.
  • 6. Chao PHG, Yodmuang S, Wang X, et al. Silk hydrogel for cartilage tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials J 2010; 95(1): 84-90.
  • 7. Min B M, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials J 2004; 25(7): 1289-1297.
  • 8. Matthews JA, Wnek GE, Simpson DG, et al. Electrospinning of collagen nanofibers. Biomacromolecules J 2002; 3(2): 232-238.
  • 9. Iijima S. Helical microtubules of graphitic carbon. Nature J 1991; 354(6348): 56-58.
  • 10. Cheng HKF, Pan Y, Sahoo NG, et al. Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. Journal of Applied Polymer Science J 2012; 124(2): 1117-1127.
  • 11. Coleman JN, Khan U, Blau WJ, et al. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon J 2006; 44(9): 1624-1652.
  • 12. Hou H, Ge JJ, Zeng J, et al. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chemistry of Materials J 2005; 17(5): 967-973.
  • 13. Wei K, Xia J, Kim BS, et al. Multiwalled carbon nanotubes incorporated bombyx mori silk nanofibers by electrospinning. Journal of Polymer Research J 2011; 18(4): 579-585.
  • 14. Lovat V, Pantarotto D, Lagostena L, et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano letters J, 2005; 5(6): 1107-1110.
  • 15. Clingerman ML, Weber E H, King J A, et al. Development of an additive equation for predicting the electrical conductivity of carbon-filled composites. Journal of applied polymer science J 2003, 88(9): 2280-2299.
  • 16. Jeong JS, Jeon SY, Lee TY, et al. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. Diamond and Related Materials J 2006, 15(11): 1839-1843.
  • 17. Kang M, Jin HJ. Electrically conducting electrospun silk membranes fabricated by adsorption of carbon nanotubes. Colloid and Polymer Science J 2007, 285(10): 1163-1167.
  • 18. Um IC, Kweon HY, Park YH, et al. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. International Journal of Biological Macromolecules J 2001, 29(2): 91-97.
  • 19. Kang M, Chen P, Jin HJ. Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning. Current Applied Physics J 2009, 9(1): 95-97.
  • 20. Lu Q,Wang XL,Lu SZ, Li MZ, Kaplan DL, Zhu HS. Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Biomaterials J 2011, 32(4): 1059-1067.
  • 21. Mercante LA, Pavinatto A, Iwaki LEO, et al. Electrospun polyamide 6/poly (allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Applied Materials & Interfaces J 2015, 7(8): 4784-4790.
  • 22. Chen D, Liu T, Zhou X, et al. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. The Journal of Physical Chemistry B J 2009, 113(29): 9741-9748.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84ff1ee4-90f0-4043-84f9-839b38380128
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.