Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Direct and inverse problems for unsteady heat conduction equation for a cylinder were solved in this paper. Changes of heat conduction coefficient and specific heat depending on the temperature were taken into consideration. To solve the non-linear problem, the Kirchhoff’s substitution was applied. Solution was written as a linear combination of Chebyshev polynomials. Sensitivity of the solution to the inverse problem with respect to the error in temperature measurement and thermocouple installation error was analysed. Temperature distribution on the boundary of the cylinder, being the numerical example presented in the paper, is similar to that obtained during heating in the nitrification process.
Czasopismo
Rocznik
Tom
Strony
81--100
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wz.
Twórcy
autor
- Poznań University of Technology, Chair of Thermal Engineering, Piotrowo 3, 60-965 Poznań
autor
- Poznań University of Technology, Chair of Thermal Engineering, Piotrowo 3, 60-965 Poznań
Bibliografia
- [1] Ciałkowski M.: Selected methods and algorithms for solving inverse problems of heat conduction equation. Wydawnictwo Politechniki Poznańskiej, Poznań 1996 (in Polish).
- [2] Ciałkowski M., Grysa K.: A sequential and global method of solving an inverse problem of heat conduction equation. J. Theor. App.Mech-Pol. 48(2010), 1, 111–134.
- [3] Ciałkowski M.J., Grysa K.W.: On a certain inverse problem of temperature and thermal stress fields. Acta Mechanica 36(1980),3-4169–185.
- [4] Duda P., Taler J.: Numerical method for the solution of non - linear two – dimensional inverse heat conduction problem using unstructured meshes. Int. J. Numer. Meth. Engng. 48(2000), 7, 881–899, 2000.
- [5] Frąckowiak A., Botkin N.D., Ciałkowski M., Hoffmann K.H.: A fitting algorithm for solving inverse problems of heat conduction. Int. J. Heat Mass Trans. 53(2010), 9-10, 2123–2127.
- [6] Frąckowiak A., Wolfersdorf J.V., Ciałkowski M.: Solution of the inverse heat conduction problem described by the Poisson equation for a cooled gas-turbine blade. Int. J. Heat . Mass Trans. 54(2011), 5-6, 1236–1243.
- [7] Gdula S.: Heat Conduction. PWN, Warszawa 1984 (in Polish).
- [8] Grysa K., Maciąg A., Adamczyk-Krasa J.: Trefftz functions applied to direct and inverse non-fourier heat conduction problems. J. Heat Trans. 136(2014), 9, 1–9.
- [9] Grysa K., Maciąg A., Pawinska A.: Solving nonlinear direct and inverse problems of stationary heat transfer by using Trefftz functions. Int. J. Heat Mass Trans. 55(2012), 23-24, 7336–7340.
- [10] Han-Taw Chen, Xin-Yi Wu: Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme. Int. J. Numer. Meth. Engng. 73(2008), 1, 107–122.
- [11] Incropera F.P., De Witt D.P.: Fundamentals of Heat and Mass Transfer. John Wiley & Sons, New York 1996.
- [12] Joachimiak M., Ciałkowski M.: Optimal choice of integral parameter in a process of solving the inverse problem for heat equation. Arch. Thermodyn. 35(2014), 3, 265–280.
- [13] Maciąg A.: Trefftz functions for selected direct and inverse problems of mechanics. Polit. Świętokrzyska Publishers, Kielce 2009 (in Polish).
- [14] Marois M.A., M. Désilets M., Lacroix M.: What is the most suitable fixed grid solidification method for handling time-varying inverse Stefan problems in high temperature industrial furnaces? Int. J. Heat Mass Trans. 55(2012), 21-22, 5471–5478.
- [15] Mierzwiczak M., Kołodziej J.A.: Application of the method of fundamental solutions with the Laplace transformation for the inverse transient heat source problem. J. Theor. App. Mech-Pol. 50(2012), 4, 1011–1023.
- [16] Mierzwiczak M., Kołodziej J.A.: The determination of heat sources in two dimensional inverse steady heat problems by means of the method of fundamental solutions. Inverse Prob. Sci. En. 19(2011), 6, 777–792.
- [17] Mierzwiczak M., Kołodziej J.A.: The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem. Int. J. Heat Mass Trans. 54(2011), 4, 790–796.
- [18] Mierzwiczak M., Kołodziej J., Ciałkowski M., Frąckowiak A.: Implementation of the method of fundamental solutions for heat conduction equation. Poznań University of technology Publishers, Poznań 2011 (in Polish).
- [19] Niedoba J., Niedoba W.: Ordinary and partial differential equations. Mathematical problems. (B. Choczewski, Ed.), Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Kraków 2001 (in Polish).
- [20] Paszkowski S.: Numerical implementation of polynominals and Chebyshev. PWN, Warszawa 1975 (in Polish).
- [21] Taler J., Duda P.: Solving direct and inverse problems of heat conduction. WNT, Warszawa 2003 (in Polish).
- [22] Taler J., Zima W.: Solution of inverse heat conduction problems using control volume approach. Int. J. Heat Mass Trans. 42(1999), 1123–1140.
- [23] Trefftz E.: Ein Gegenstük zum Ritz’schen Verfahren. Proc. 2nd Int. Cong. of Applied Mechanics, Zürich 1926, 131-137.
- [24] Vakili S., Gadala M.S.: Low cost surrogate model based evolutionary optimization solvers for inverse heat conduction problem. Int. J. Heat Mass Trans, 56(2013), 263-273.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84fd7312-f1d8-41dc-b53c-4e1845d6028c