PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The philosophy of fire safety engineering in the shaping of civil engineering development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents modern application of fire safety engineering (FSE) in the shaping of civil engineering development. Presented scientific achievements of FSE become tools used in typical modern engineering workflow. Experience gained through successful implementations of these solutions is then further crafted into prescriptive laws that shape future fire safety. This diffusion of knowledge is limited by law requirements themselves, technical limitations, and yet unresolved challenges that are still being worked on by the researchers in this field. This paper aims to present the achievements of the FSE discipline that may and should be used by civil engineers and other participants of the building process. Explanations given for the choices of fire safety engineers allow a better understanding of their gravity by representatives of other engineering branches. That way it is possible to build empathy between different engineering disciplines, which may significantly improve both the building design process and safety of the buildings itself. The chosen framework of this paper is Appendix A to EU Construction Products Regulation defining basic goals for a fire safe building, with a possible application of FSE given for each of these goals. The current framework of performance-based FSE is presented in relation to the Polish legal system, with recommendations on how to improve both FSE and civil engineering in the future.
Rocznik
Strony
719--730
Opis fizyczny
Bibliogr. 87 poz., rys., tab., fot.
Twórcy
  • Fire Research Department, Building Research Institute (ITB), 1 Filtrowa St., 00-611 Warszawa, Poland
autor
  • The Main School of Fire Service (SGSP), 52/54 Słowackiego St., 01-629 Warszawa, Poland
Bibliografia
  • [1] B.J. Meacham, “The evolution of performance-based codes and fire safety design methods”, NIST-GCR-98‒761, NIST, Gaithersburg, MD, 1998.
  • [2] B.J. Meacham, “Fire safety engineering at a crossroad”, Case Stud. Fire Saf. 1, doi:10.1016/j.csfs.2013.11.001, 8–12 (2014).
  • [3] L. Czarnecki and D. van Gemert, “Scientific basis and rules of thumb in civil engineering: conflict or harmony?”, Bull. Pol. Ac.:Tech. 64 (4), 665‒673 (2016).
  • [4] M. Abramowicz and R. Kowalski, „Projektant konstrukcji obiektu i rzeczoznawca do spraw zabezpieczeń przeciwpożarowych – wzajemne powiązania”, Materiały Budowlane, (2014), [in Polish].
  • [5] G. Vigne, “Origini della fire safety engineering e prospettive nella prevenzione incendi odierna”, in XVI Convegno Naz. AIIA I Metod. Della Fire Saf. Eng. Alla Luce Del Codice Di Prev. Incend. 2015, Milano, 2016, [in Italian].
  • [6] M. Woodrow, L. Bisby, and J.L. Torero, “A nascent educational framework for fire safety engineering”, Fire Saf. J. 58, doi:10.1016/j.firesaf.2013.02.004, 180–194 (2013).
  • [7] H.E. Nelson, “History of fire technology”, in Conf. Fire Saf. Des. 21st Century, Worcester Polytechnic Institute, Worcester, MA, 1991.
  • [8] B.J. Meacham, “International experience in the development and use of performance-based fire safety design methods: Evolution, current situation and thoughts for the future”, 6th International Symposium on Fire Safety Science, 59–76 (2000).
  • [9] General Services Administration, Building Fire Safety Criteria. Appendix D: Interim Guide for Goal-Oriented Systems Approach to Building Firesafety, Washington, DC, 1972.
  • [10] M. Law and P. Beever, “Magic numbers and golden rules”, Fire Technol. 31, doi:10.1007/BF01305269, 77–83 (1995).
  • [11] G. V. Hadjisophocleous, N. Benichou, and A. S. Tamim, “Literature review of performance-based fire codes and design environment”, J. Fire Prot. Eng. 9, doi:10.1177/104239159800900102, 12–40 (1998).
  • [12] A. Alvarez, B.J. Meacham, N.A. Dembsey, and J.R. Thomas, “A framework for risk-informed performance-based fire protection design for the built environment”, Fire Technol. 50, doi:10.1007/s10694‒013‒0366‒1, 161–181 (2014).
  • [13] A. Alvarez, B.J. Meacham, N. Dembsey, and J. Thomas, “Twenty years of performance-based fire protection design: challenges faced and a look ahead”, J. Fire Prot. Eng. 23, doi:10.1177/1042391513484911, 249–276 (2013).
  • [14] D.J. Thomas, “All codes are mixed: why implementation needs will prevail over “performance” and “prescription” in the open universe of 21st century fire protection”, in Second Conf. Fire Saf. Des. 21st Century, pp. 227–241, Worcester Polytechnic Institute, Worcester, MA, 1999.
  • [15] Report of Building Committee, Recommended Practice for Arrangement of Building Codes, Washington Government Printing Office, 1925, http://hdl.handle.net/2027/uc1.$b78828.
  • [16] „Ustawa z dnia 7 lipca 1994. – Prawo budowlane. Z późniejszymi zmianami”, 2016, [in Polish].
  • [17] „Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Z późniejszymi zmianami.”, Dz.U. 2002 Nr 75 Poz. 690, 2002, [in Polish].
  • [18] „Rozporządzenie Ministra Infrastruktury z dnia 17 czerwca 2011 r. w sprawie warunków technicznych, jakim powinny odpowiadać obiekty budowlane metra i ich usytuowanie”, Dz.U. 2011 Nr 144 Poz. 859, 2011, [in Polish]
  • [19] G. Vigne and W. Węgrzyński, “Influence of variability of soot yield parameter in assessing the safe evacuation conditions in advanced modeling analysis. Results of physical and numerical modeling comparison”, in 11th Conf. Performance-Based Codes Fire Saf. Des. Methods, Warsaw, Poland, SFPE, 2016.
  • [20] “Regulation (EU) No 305/2011 of The European Parliament and the Council of 9th March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC”, 5–43 (2011).
  • [21] S. Yokoi, “Study on the prevention of fire-spread caused by hot upward current”, Report of the Building Research Institute 34, (1960).
  • [22] P.H. Thomas, P.L. Hinkley, C.R. Theobald, and D.L. Simms, “Investigations into the flow of hot gases in roof venting”, HMSO, London, 1963.
  • [23] K. Kawagoe, “Real Fire and Fire Modeling”, Fire Saf. Sci. – Proc. Second Int. Symp., 1–14 (1988).
  • [24] J.G. Quintiere and C.A. Wade, “Compartment fire modeling”, in SFPE Handb. Fire Prot. Eng., pp. 981–995, doi:10.1007/978‒1-4939‒2565‒0_29, Springer, New York, 2016.
  • [25] R.D. Peacock, G.P. Forney, P.A. Reneke, and W.W. Jones, CFAST, the Consolidated Model of Fire Growth and Smoke Transport (Version 6) Technical Reference Guide, 2009.
  • [26] C. Wade, G. Baker, K. Frank, A. Robbins, R. Harrison, M. Spearpoint, and C. Fleischmann, “B-RISK user guide and technical manual”, Branz Study Rep. 282, 1–38 (2013).
  • [27] R. Harrison, C. Wade, and M. Spearpoint, “Predicting spill plumes with the fire risk zone model B-RISK”, Fire Technol. 50, doi:10.1007/s10694‒013‒0364‒3, 205–231 (2014).
  • [28] L.Y. Cooper, “A concept for estimating available safe egress time in fires”, Fire Saf. J. 5, doi:10.1016/0379‒7112(83)90006‒1, 135–144 (1983).
  • [29] W. Węgrzyński and G. Krajewski, „Dobór modeli oraz warunków brzegowych a wynik analizy numerycznej rozprzestrzeniania się dymu i ciepła”, Build. Mater. 11, (2014), [in Polish].
  • [30] G. Rein, J.L. Torero, W. Jahn, J. Stern-Gottfried, N.L. Ryder, S. Desanghere, M. Lázaro, F. Mowrer, A. Coles, D. Joyeux, D. Alvear, J.A. Capote, A. Jowsey, C. Abecassis-Empis, and P. Reszka, “Round-robin study of a priori modelling predictions of the Dalmarnock Fire Test One”, Fire Saf. J. 44, doi:10.1016/j.firesaf.2008.12.008, 590–602 (2009).
  • [31] W. Jahn, G. Rein, and J.L. Torero, “A posteriori modelling of the growth phase of Dalmarnock Fire Test One”, Build. Environ. 46, doi:10.1016/j.buildenv.2010.11.001, 1065–1073 (2011).
  • [32] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt, Fire Dynamics Simulator User’s Guide, Sixth Edition, doi:10.6028/NIST.SP.1019, 2016.
  • [33] OpenFOAM Foundation, OpenFOAM User Guide, (n.d.). http://cfd.direct/openfoam/user-guide/ (24 August 2016).
  • [34] ANSYS, ANSYS Fluent 14.5.0 – Technical Documentation, 2014.
  • [35] CHAM, PHOENICS Overview – CHAM Technical Report: TR 001, 2005.
  • [36] FSEG, Smartfire Introduction, (n.d.). http://fseg.gre.ac.uk/smartfire/index.html (accessed October 8, 2016).
  • [37] Siemens, Star-CCM+, n.d. http://mdx.plm.automation.siemens.com/star-ccm-plus.
  • [38] B. Merci, J.L. Torero, and A. Trouvé, “IAFSS working group on measurement and computation of fire phenomena”, Fire Technol. 52, doi:10.1007/s10694‒016‒0577‒3, 607–610 (2016).
  • [39] W. Węgrzyński, G. Krajewski, and P. Sulik, “Case study 2 – production and storage building (Poland)”, in 11th Conf. Performance-Based Codes Fire Saf. Des. Methods, doi:10.13140/RG.2.1.3677.4640, SFPE, Warsaw, 2016.
  • [40] P. Kubica, L. Czarnecki, S. Boroń, and W. Węgrzyński, “Maximizing the retention time of inert gases used in fixed gaseous extinguishing systems”, Fire Saf. J. 80, doi:10.1016/j.firesaf.2015.11.008, 1–8 (2016).
  • [41] G. Krajewski and W. Węgrzyński, “Air curtain as a barrier for smoke in case of fire: Numerical modelling”, Bull. Pol. Ac.: Tech. 63 (1), doi:10.1515/bpasts-2015‒0016, 145–153 (2015).
  • [42] Z. Salamonowicz, M. Kotowski, M. Półka, and W. Barnat, “Numerical simulation of dust explosion in the spherical 20l vessel”, Bull. Pol. Ac.: Tech. 63 (1), doi:10.1515/bpasts-2015‒0033, 289–293 (2015).
  • [43] P. Tofiło, W. Węgrzyński, and R. Porowski, “Hand calculations, zone models and CFD – areas of disagreement and limits of application in practical fire protection engineering”, in 11th Conf. Performance-Based Codes Fire Saf. Des. Methods, SFPE, Warsaw, Poland, 2016.
  • [44] Society of Fire Protection Engineers, Guidelines for Substantiating a Fire Model for a Given Application SFPE G.06, Bethesda, Maryland, 2011.
  • [45] K. Mcgrattan, R. Peacock, and K. Overholt, “Fire model validation – eight lessons learned”, Fire Saf. Sci. – Proceedngs Elev. Int. Symp., doi:10.3801/IAFSS.FSS.11‒958, 958–968 (2014).
  • [46] E.D. Kuligowski, R.D. Peacock, and B.L. Hoskins, Technical Note 1680 A Review of Building Evacuation Models, 2nd Edition, NIST (2010).
  • [47] V. Babrauskas and R. Williamson, “The historical basis of fire resistance testing — Part I”, Fire Technol. 14, doi:10.1007/BF01983053, 184–194 (1978).
  • [48] A. Law, “The role of modelling in structural fire engineering design”, Fire Saf. J. 80, doi:10.1016/j.firesaf.2015.11.013, 89–94 (2016).
  • [49] J. Stern-Gottfried, “Travelling fires for structural design”, Fire Saf. J. 54, doi:10.1016/j.firesaf.2012.06.003, 74–85 (2011).
  • [50] E. Rackauskaite, C. Hamel, A. Law, and G. Rein, “Improved formulation of travelling fires and application to concrete and steel structures”, Structures 3, doi:10.1016/j.istruc.2015.06.001, 250–260 (2015).
  • [51] CEN, EN 1990:2002+A1: Eurocode – Basis of structural design, 2005.
  • [52] CEN, EN 1991‒1-2 Eurocode 1: Actions on the structures – Part 1‒2: General actions – Actions on the structures exposed to fire, 2002.
  • [53] P. Turkowski and P. Sulik, “Fire protection of CFRP-strengthened RC structures”, in Response Struct. under Extrem. Load. Proc. Prot. 2015 Fifth Int. Work. Performance, Prot. Strength. Struct. under Extrem. Loading, pp. 789–796, East Lansing, MI, 2015.
  • [54] W. Węgrzyński and G. Krajewski, “Combined wind engineering, smoke flow and evacuation analysis for a design of a natural Smoke and Heat Ventilation System”, Procedia Eng., (unpublished).
  • [55] W. Węgrzyński, “Design of smoke exhaust from a common reservoir – shaping the compartment opening for the benefits of smoke control”, in 11th Conf. Performance-Based Codes Fire Saf. Des. Methods, SFPE, Warsaw, Poland, 2016.
  • [56] W. Węgrzyński and G. Krajewski, Systemy wentylacji pożarowej garaży. Projektowanie, ocena, odbiór, 493/2015, Instytut Techniki Budowlanej, 2015, [in Polish].
  • [57] P. Tofiło, R. Porowski, and W. Węgrzyński, “Spatial distribution of thermal radiation – Verification of the finite volume method”, in Interflam, 2016.
  • [58] A. Kolbrecki, “Model of fire spread out on outer building surface”, Bull. Pol. Ac.: Tech. 63 (1), doi:10.1515/bpasts-2015‒0015, 135–144 (2015).
  • [59] E.D. Kuligowski, “Human behavior in fire”, in SFPE Handb. Fire Prot. Eng., pp. 2070–2114, doi:10.1007/978‒1-4939‒2565‒0_58, Springer New York, New York, NY, 2016.
  • [60] R. Lubaś, J. Wąs, and J. Porzycki, “Cellular automata as the basis of effective and realistic agent-based models of crowd behavior”, J. Supercomput. 72, doi:10.1007/s11227‒016‒1718‒7, 2170–2196 (2016).
  • [61] E.D. Kuligowski, R.D. Peacock, P.A. Reneke, C.R. Hagwood, K.J. Overholt, R.P. Elkin, J.D. Averill, B.L. Hoskins, and E. Wiess, Movement on Stairs During Building Evacuations, NIST Tech. Note 1839, doi:10.1007/s10694‒016‒0603‒5NIST, 212 (2014).
  • [62] K. Fridolf, K. Andrée, D. Nilsson, and H. Frantzich, “The impact of smoke on walking speed”, Fire Mater. 38, doi:10.1002/fam.2217, 744–759 (2014).
  • [63] E. Carattin and V. Brannigan, “Science or science fiction? The use of human behavioral models in fire safety regulation”, Intersci. Comms., 553–558 (2013).
  • [64] E. Carattin and V. Brannigan, “Lost in abstraction : the complexity of real environments vs the assumptions of models”, Fire Evacuation Model. Tech. Conf. 2014, doi:10.13140/2.1.4438.6561, (2014).
  • [65] V. Babrauskas, J.M. Fleming, and B. Don Russell, “RSET/ASET, a flawed concept for fire safety assessment”, Fire Mater. 34, doi:10.1002/fam.1025, 341–355 (2010).
  • [66] BSI, The application of fire safety engineering principles to fire safety design of buildings – Part 6: Human factors: Life safety strategies – Occupant evacuation, behavious and condition (Subsystem 6), PD 7974‒6. (2004).
  • [67] P. Grimwood and I.A. Sanderson, “A performance based approach to defining and calculating adequate firefighting water using s.8.5 of the design guide BS PD 7974:5:2014 (fire service intervention)”, Fire Saf. J. 78, doi:10.1016/j.firesaf.2015.08.007, 155–167 (2015).
  • [68] C. Weinschenk, C. Beal, and O.A. Ezekoye, “Modeling fan-driven flows for firefighting tactics using simple analytical models and CFD”, J. Fire Prot. Eng. 21, doi:10.1177/1042391510395694 85–114 (2011).
  • [69] Society of Fire Protection Engineers, SFPE Eng. Guide to Performance-Based Fire Protection, 2nd Ed., 2007.
  • [70] M.J. Hurley and E.R. Rosenbaum, “Performance-based design”, in SFPE Handb. Fire Prot. Eng., pp. 1233–1261, doi:10.1007/978‒1-4939‒2565‒0_37, Springer, New York, 2016.
  • [71] D.A. Purser and J.L. McAllister, “Assessment of hazards to occupants from smoke, toxic gases, and heat”, in SFPE Handb. Fire Prot. Eng., pp. 2308–2428, doi:10.1007/978‒1-4939‒2565‒0_63, Springer, New York, 2016.
  • [72] D.A. Purser, “Combustion toxicity”, in SFPE Handb. Fire Prot. Eng., pp. 2207–2307, doi:10.1007/978‒1-4939‒2565‒0_62, Springer, New York, 2016.
  • [73] T. Yamada and Y. Akizuki, “Visibility and human behavior in fire smoke”, in SFPE Handb. Fire Prot. Eng., pp. 2181–2206. doi:10.1007/978‒1-4939‒2565‒0_61, Springer, New York, 2016.
  • [74] W. Węgrzyński and P. Turkowski, “Fire resistance of a roof tensile structure in parametric fire conditions calculated using CFD simulations and simplified calculation methods”, in SFPE Eur. Conf. Fire Saf. Eng., doi:10.13140/RG.2.1.1832.7286, (2015).
  • [75] S. Hostikka and O. Keski-Rahkonen, “Probabilistic simulation of fire scenarios”, Nucl. Eng. Des. 224, doi:10.1016/S0029‒5493(03)00106‒7, 301–311 (2003).
  • [76] P. Ayala, A. Cantizano, E.F. Sánchez-Úbeda, and C. Gutiérrez-Montes, “The use of fractional factorial design for atrium fires prediction”, Fire Technol., doi:10.1007/s10694‒016‒0609-z, (2016).
  • [77] S. Suard, S. Hostikka, and J. Baccou, “Sensitivity analysis of fire models using a fractional factorial design”, Fire Saf. J. 62, doi:10.1016/j.firesaf.2013.01.031, 115–124 (2013).
  • [78] G. Baker, C. Wade, M. Spearpoint, and C. Fleischmann, “Developing probabilistic design fires for performance-based fire safety engineering”, Procedia Eng. 62, doi:10.1016/j.proeng.2013.08.109, 639–647 (2013).
  • [79] J. Hietaniemi and E. Mikkola, Design Fires for Fire Safety Engineering, 2010.
  • [80] A. Bwalya, “An overview of design fires for building compartments”, Fire Technol. 44, doi:10.1007/s10694‒007‒0031‒7, 167–184 (2008).
  • [81] H. Park, B.J. Meacham, N.A. Dembsey, and M. Goulthorpe, “Conceptual model development for holistic building fire safety performance analysis”, Fire Technol. 51, doi:10.1007/s10694‒013‒0374‒1, 173–193 (2013).
  • [82] J. Gałaj, W. Jaskółowski, M. Konecki, P. Tofiło, and N. Tuśnio, “Interactive modular platform for fire risk assessment of buildings as a supporting tool for buildings and infrastructures design”, Procedia Eng. 57, doi:10.1016/j.proeng.2013.04.042 310–319 (2013).
  • [83] P. Tofiło, M. Konecki, J. Gałaj, W. Jaskółowski, N. Tuśnio, and M. Cisek, “Expert system for building fire safety analysis and risk assessment”, Procedia Eng. 57, doi:10.1016/j.proeng.2013.04.146, 1156–1165 (2013).
  • [84] H. Park, “Development of a holistic approach to integrate fire safety performance with building design”, Worcester Polytechnic Institute, 2014.
  • [85] W. Węgrzyński, “Fire testing laboratory in performance based engineering”, in 11th Conf. Performance-Based Codes Fire Saf. Des. Methods, doi: 10.13140/RG.2.1.3368.2168, Pionki, 2016.
  • [86] J. Kinowski, B. Sędłak, and P. Sulik, “Falling parts of external walls claddings in case of fire – ITB test method – results comparison”, MATEC Web Conf. 46, doi:10.1051/matecconf/20164602005, (2016).
  • [87] G. Rein, “Trends in fire protection engineering: Challenges of today and tomorrow”, in Symp. Fire Prot. a Chang. World, NFPA, Munich, 2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84fc3f7c-92eb-451a-bd61-608ed331b342
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.