PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability of Thin-Walled Composite Structures with Closed Sections Under Compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the research was to analyze the experimental-numerical influence of the type of cross-section on the stability of thin-walled composite columns with closed (rectangular) cross-sections. The subject of the investigation was thin-walled composite structures made of CFRP composite (carbon fiber reinforced polimer), characterized by a closed rectangular cross-section shape of the profile and a identical ply configuration. In this study, experimental and numerical investigations of axially compressed columns were performed to determine the values of buckling loads and buckling forms. Experimental investigations were performed using a universal testing machine with an optical deformation measurement system. In parallel with the experimental tests, numerical simulations were made using the FEM (Finite Element Method). The numerical studies conducted using dedicated numerical models and the experimental studies made it possible to carry out a thorough analysis of the impact of the cross-sectional shape on the buckling phenomenon of the structure. The novelty of the present paper is the use of interdisciplinary testing methods to compare the effect of cross-sectional geometry on the stability of thin-walled composite columns.
Twórcy
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Swanson S.R. Introduction to Design and Analysis with Advanced Composite Materials, Englewood Cliffs: Prentice-Hall, 1997.
  • 2. Fascetti A., Feo L., Nistic N. and Penna R. Webflange behavior of pultruded GFRP I-beams: A lattice model for the interpretation of experimental results, Composites Part B: Engineering 2016; 257–269, https://doi.org/10.1016/j.compositesb.2016.06.058
  • 3. Różyło P., Falkowicz K., Wysmulski P., Dębski H., Paśnik J. and Kral J. Experimental-numerical faiure analysis of thin-walled composite columns using advanced damage models, Materials 2021; 14(6): 1506, https://doi.org/10.3390/ma14061506
  • 4. Berardi V., Perrella M., Feo L. and Cricrì G. Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modeling, Composites Part B Engineering, pp. 136-144, 2017, 122. DOI: https://doi.org/10.1016/j.compositesb.2017.04.015
  • 5. P. Rożyło and H. Dębski, Effect of eccentric loading on the stability and load-carrying capacity of thin-walled composite profiles with top-hat section, Composite Structures 2020; 245: 112388, https:// doi.org/10.1016/j.compstruct.2020.112388
  • 6. Różyło P., Rosłaniec K., and Kuciej M. Buckling of compressed thin-walled composite structures with closed sections, Advances in Science and Technology Research Journal 2023; 17(6): 63–72, https://doi.org/10.12913/22998624/174193
  • 7. Kim N-I., Shin D.K. and Park Y.S. Coupled stability analysis of thin-walled composite beams with closed cross-section, Thin-Walled Structures 2010; 18(8): 581–596, https://doi.org/10.1016/j.tws.2010.03.006
  • 8. Urbaniak M., Świniarski J., Czapski P. and Kubiak T. Experimental investigations of thin-walled GFRP beams subjected to pure bending, Thin Walled Structures 2016, 107: 397–404, https://doi. org/10.1016/j.tws.2016.06.022
  • 9. Droździel M., Podolak P., Czapski P., Zgorniak P. and Jakubczak P. Failure analysis of GFRP columns subjected to axial compression manufactured under various curing-process conditions, Composite Structures, 2011; 262: 113342, https://doi.org/10.1016/j. compstruct.2020.113342
  • 10. Gliszczyński A. and Kubiak T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression, Composite Structures 2017; 169: 52–61, https://doi.org/10.1016/j. compstruct.2016.10.029
  • 11. Dębski H., Samborski S., Różyło P. and Wysmulski P. Stability and load-carrying capacity of thinwalled FRP composite Z-profiles under eccentric compression, Materials 2020; 13(13): 2956, https:// doi.org/10.3390/ma13132956
  • 12. Różyło P. Failure phenomenon of compressed thin-walled composite columns with top-hat crosssection for three laminate lay-ups, Composite Structures 2023; 304: 116381, https://doi.org/10.1016/j. compstruct.2022.116381
  • 13. Baker A., Dutton S. and Donald K.D. Composite materials for aircraft structures, Reston: American Institiute of Aeronautics and Astronautics 2004.
  • 14. Soutis C. Carbon fiber reinforced plastics in aircraft construction, Materials Science ang Engineering 2005, 412(1–2): 171–176, https://doi.org/10.1016/j. msea.2005.08.064
  • 15. Zaczynska M. and Mania R.J. Investigation of dynamic buckling of fiber metal laminate thin-walled columns under axial compression, Composite Structure 2021; 17(4), https://doi.org/10.12913/22998624/169970
  • 16. Li W., Cai H., Li C., Wang K. and Fang L. Progressive failure of laminated composites with a hole under compressive loading based on micromechanics, Advanced Composite Materials 2014; 23(5–6): 477–490, https://doi.org/10.1080/092430 46.2014.915105
  • 17. Banat D., Mania R.J. and Degenhardt R. Stress state failure analysis of thin-walled GLARE composite members subjected to axial loading in the post-buckling range, Composite Structure 2022; 289: 115468, https://doi.org/10.1016/j.compstruct.2022.115468
  • 18. Różyło P. and Dębski H. Failure study of compressed thin-walled composite columns with top-hat cross-section, Thin-Walled Structures 2022; 180: 109869, https://doi.org/10.1016/j.tws.2022.109869
  • 19. Zhang H., Yang D., Ding H., Wang H., Xu Q.Y. Ma and et al., Effect of Z-pin insertion angles on low-velocity impact mechanical response and damage mechanism of CFRP laminates with different layups, Composites Part A: Applied Science and Manufacturing 2022; 150: 106593, https://doi. org/10.1016/j.compositesa.2021.106593
  • 20. Qiu C., Han Y., Shanmugam L., Zhao Y., Dong S., Du S. and et al. A deep learning-based composite design strategy for efficient selection of material andlayup sequences from a given database, Composites Science and Technology 2022; 230: 109154, https:// doi.org/10.1016/j.compscitech.2021.109154
  • 21. Hu Y., Zhang Y., Fu X., Hao G. and Jiang W. Mechanical properties of Ti/CF/PMR polyimide fiber metal laminates with various layup configurations, Composite Structures 2019; 229: 111408, https:// doi.org/10.1016/j.compstruct.2019.111408
  • 22. Bin Kamarudin M.N., Mohamed Ali J.S., Aabid A. and Ibrahim Y.E., Buckling analysis of a thin-walled structure using finite element method and design of experiments, Aerospace 2022; 9(10): 541, https://doi.org/10.3390/aerospace9100541
  • 23. Kubiak T. Static and dynamic buckling of thin-walled plate structures, Dordrecht, The Netherlands: Springer Science and Business Media LLC 2013; 112–121, http://dx.doi.org/10.1007/978-3-319-00654-3_3
  • 24. Paszkiewicz M. and Kubiak T. Selected problems concerning determination of the buckling load of channel section beams and columns, Thin-Walled Structures 2015; 93: 112–121. https://doi. org/10.1016/j.tws.2015.03.009
  • 25. Różyło P., Teter A., Dębski H., Wysmulski P. and Falkowicz K. Experimental and numerical study of the buckling of composite profiles with open cross section under axial compression, Applied Composite Materials 2017; 24(5): 125–11264, 10.1007/ s10443-017-9583-y
  • 26. Ragheb W.F.W.F. Local buckling analysis of pultruded FRP structural shapes subjected to eccentric compression, Thin-Walled Structures 2010; 48(9): 709–717, https://doi.org/10.1016/j.tws.2010.04.011
  • 27. Kamarudin M.N.B., Ali J.S. Aabid M.A. and Ibrahim Y.E., Buckling analysis of a thin-walled structure using finite element method and design of experiments, Aerospace 2022; 9(10): 541, https://doi. org/10.3390/aerospace9100541
  • 28. Rozylo P. and Falkowicz K., Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models, Composite Structures 2021; 273: 114298, https://doi.org/10.1016/j. compstruct.2021.114298
  • 29. Kubiak T., Samborski S. and Teter A. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method, 2015; 133: 921–929, https://doi.org/10.1016/j.compstruct.2015.08.023
  • 30. Różyło P., Smagowski W. and Paśnik J. Experimental research in the aspect of determining the mechanical and strength properties of the composite material made of carbon-epoxy composite, Advances in Science and Technology Research Journal 2023; 17(2): 232–246, https://doi.org/10.12913/22998624/161598
  • 31. Różyło P., Determined material properties within the framework of the NCN project (OPUS) No. 2021/41/B/ST8/00148. Dataset.Source: Zenodo 2023; https://doi.org/10.5281/zenodo.7606941
  • 32. Wysmulski P. Numerical and experimental study of crack propagation in the tensile composite plate with the open hole, Advances in Science and Technology Research Journal 2023; 17(4): 249ؘ–261, https://doi. org/10.12913/22998624/169970
  • 33. Różyło P. and Dębski H. Stability and load carrying capacity of thin-walled composite columns with square cross-section under axial compression, Composite Structures 2024; 329: 117795, https:// doi.org/10.1016/j.compstruct.2023.117795
  • 34. Rozylo P., Rogala M. and Pasnik J. Buckling analysis of thin-walled composite structures with rectangular cross-sections under compressive load, Materials 2023; 16: 6835, https://doi.org/10.3390/ ma16216835
  • 35. Nowak M. and Maj M. Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: Numerical procedures and results, Archives of Civil and Mechanical Engineering 2018; 18(2): 630–644, https://doi.org/10.1016/j.acme.2017.10.005
  • 36. Holmes J., Sommacal S., Das R., Stachurski Z. and Compston P. Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: A review, Composite Structures 2023; 315: 116994, https://doi. org/10.1016/j.compstruct.2023.116994
  • 37. Reu P.L., Toussaint E., Jones E., Bruck H.A., Iadicola M., Balcaen R., Turner D.Z., Siebert T., LavaP. and Simonsen M. DIC challenge: developing images and guidelines for evaluating accuracy and resolution of 2D analyses, Experimental Mechanics 2018; 58: 1067–1099, http://dx.doi.org/10.1007/ s11340-017-0349-0
  • 38. Khoo S.-W., Karuppanan S. and Tan C.-S. A review of surface deformation and strain measurement using two-dimensional digital image correlation, Metrology and Measurment Systems 2016; 3: 461480, https://doi.org/10.1515/mms-2016-0028
  • 39. Różyło P. Stability and failure of compressed thinwalled composite columns using experimental tests and advanced numerical damage models, International Journal for Numerical Methods in Engineering 2021; 122(18): 5076–5099.
  • 40. Grzejda R. Fe-modelling of a contact layer between elements joined in preloaded bolted connections for the operational condition, Advances in Science and Technology Research Journal 2014; 8(24): 19–23, https://doi.org/10.12913/22998624/561
  • 41. Grzejda R. Determination of bolt forces and normal contact pressure between elements in the system with many bolts for its assembly conditions, Advances in Science and Technology Research Journa 2019, 13(1): 116–121, https://doi. org/10.12913/22998624/104657
  • 42. Różyło P., Dębski H. and Kral J. Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression, AIP Conference Proceedings 2018; 122(1), https://doi. org/10.1063/1.5019072
  • 43. Hu H., Niu F., Dou T. and Zhang H. Rehabilita- tion effect evaluation of CFRP-lined prestressed concrete cylinder pipe under combined loads using numerical simulation, Mathematical Problems in Engineering 2018; 3268962, https://doi. org/10.1155/2018/3268962
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84f60500-7d51-4064-9065-c3d99a598649
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.