PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved Two-Dimensional Double Successive Projection Algorithm for Massive MIMO Detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a massive multiple-input multiple-output (MIMO) system, a large number of receiving antennas at the base station can simultaneously serve multiple users. Linear detectors can achieve optimal performance but require large dimensional matrix inversion, which requires a large number of arithmetic operations. Several low complexity solutions are reported in the literature. In this work, we have presented an improved two-dimensional double successive projection (I2D-DSP) algorithm for massive MIMO detection. Simulation results show that the proposed detector performs better than the conventional 2D-DSP algorithm at a lower complexity. The performance under channel correlation also improves with the I2D-DSP scheme. We further developed a soft information generation algorithm to reduce the number of magnitude comparisons. The proposed soft symbol generation method uses real domain operation and can reduce almost 90% flops and magnitude comparisons.
Słowa kluczowe
EN
massive MIMO   MMSE   ZF   2D-DSP   QAM   LLR   I2D-DSP  
Twórcy
  • Department of Electronics and Communication Engineering, Cooch Behar Government Engineering College, Coochbehar,India
  • Principal, Maharaja Nandakumar Mahavidyalaya, Purba Medinipore, India
  • Department of Electronics and Telecommunication, Engineering, IIEST Shibpur, Howrah, India
Bibliografia
  • [1] N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic Metasurface Antennas for 6G Extreme Massive MIMO Communications,” IEEE Wireless Communications, vol. 28, no. 2, pp. 106-113, 2021. https://doi.org/10.1109/MWC.001.2000267
  • [2] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up mimo: Opportunities and challenges with very large arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, 2013. https://doi.org/10.1109/MSP.2011.2178495.
  • [3] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser mimo systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1436-1449, 2013. https://doi.org/10.1109/TCOMM.2013.020413.110848
  • [4] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive mimo for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, 2014. https://doi.org/10.1109/MCOM.2014.6736761
  • [5] M. A. Albreem, M. Juntti, and S. Shahabuddin, “Massive mimo detection techniques: A survey,” IEEE Communications Surveys Tutorials, vol. 21, no. 4, pp. 3109-3132, 2019. https://doi.org/10.1109/COMST.2019.2935810
  • [6] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, “Large-scale mimo detection for 3gpp lte: Algorithms and fpga implementations,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 916-929, 2014. https://doi.org/10.1109/JSTSP.2014.2313021
  • [7] D. Zhu, B. Li, and P. Liang, “On the matrix inversion approximation based on neumann series in massive mimo systems,” in IEEE International Conference on Communications (ICC), 2015, pp. 1763-1769. https://doi.org/10.1109/ICC.2015.7248580
  • [8] J. Minango and C. de Almeida, “Low complexity zero forcing detector based on newton-schultz iterative algorithm for massive mimo systems,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11 759-11 766, 2018. https://doi.org/10.1109/TVT.2018.2874811
  • [9] C. Zhang, Z. Li, L. Shen, F. Yan, M. Wu, and X. Wang, “A low-complexity massive mimo precoding algorithm based on chebyshev iteration,” IEEE Access, vol. 5, pp. 22 545-22 551, 2017. https://doi.org/10.1109/ACCESS.2017.2760881
  • [10] T. Xie, Q. Han, H. Xu, Z. Qi, and W. Shen, “A low-complexity linear precoding scheme based on sor method for massive mimo systems,” in IEEE 81st Vehicular Technology Conference (VTC Spring), 2015, pp. 1-5. https://doi.org/10.1109/VTCSpring.2015.7145618
  • [11] B. Kang, J.-H. Yoon, and J. Park, “Low-complexity massive mimo detectors based on richardson method,” ETRI Journal, vol. 39, no. 3, pp. 326-335, 2017. https://doi.org/10.4218/etrij.17.0116.0732
  • [12] L. Dai, X. Gao, X. Su, S. Han, C.-L. I, and Z. Wang, “Low-complexity soft-output signal detection based on gauss-seidel method for uplink multiuser large-scale mimo systems,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4839-4845, 2015. https://doi.org/10.1109/TVT.2014.2370106
  • [13] Z. Wu, C. Zhang, Y. Xue, S. Xu, and X. You, “Efficient architecture for soft-output massive mimo detection with gauss-seidel method,” in IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 1886-1889. https://doi.org/10.1109/ISCAS.2016.7538940
  • [14] X. Gao, L. Dai, Y. Hu, Z. Wang, and Z. Wang, “Matrix inversion-less signal detection using sor method for uplink large-scale mimo systems,” in IEEE Global Communications Conference, Dec 2014, pp. 3291-3295. https://doi.org/10.1109/GLOCOM.2014.7037314
  • [15] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “Conjugate gradient-based soft-output detection and precoding in massive mimo systems,” in IEEE Global Communications Conference, Dec 2014, pp. 3696-3701. https://doi.org/10.1109/GLOCOM.2014.7037382
  • [16] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, “Fpga design of a coordinate descent data detector for large-scale mu-mimo,” in IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 1894-1897. https://doi.org/10.1109/ISCAS.2016.7538942
  • [17] X. Liu and J. Zhang, “A signal detection algorithm based on chebyshev accelerated symmetrical successive over-relaxation iteration for massive mimo system,” in 9th International Conference on Wireless Communications and Signal Processing (WCSP), Oct 2017, pp. 1-6. https://doi.org/10.1109/WCSP.2017.8171111
  • [18] G. Peng, L. Liu, P. Zhang, S. Yin, and S. Wei, “Low-computing-load, high-parallelism detection method based on chebyshev iteration for massive mimo systems with vlsi architecture,” IEEE Transactions on Signal Processing, vol. 65, no. 14, pp. 3775-3788, July 2017. https://doi.org/10.1109/TSP.2017.2698410
  • [19] X. Qin, Z. Yan, and G. He, “A near-optimal detection scheme based on joint steepest descent and jacobi method for uplink massive mimo systems,” IEEE Communications Letters, vol. 20, no. 2, pp. 276-279, Feb 2016. https://doi.org/10.1109/LCOMM.2015.2504506
  • [20] Y.-F. Jing and T.-Z. Huang, “On a new iterative method for solving linear systems and comparison results,” Journal of Computational and Applied Mathematics, vol. 220, no. 1, pp. 74-84, 2008. https://doi.org/10.1016/j.cam.2007.07.035
  • [21] X. Jing, J. Wen, and H. Liu, “Low-complexity soft-output signal detector for massive mimo with higher order qam constellations,” Digital Signal Processing, vol. 108, p. 102886, 2021. https://doi.org/10.1016/j.dsp.2020.102886
  • [22] F. Jin, Q. Liu, H. Liu, and P. Wu, “A low complexity signal detection scheme based on improved newton iteration for massive mimo systems,” IEEE Communications Letters, vol. 23, no. 4, pp. 748-751, April 2019. https://doi.org/10.1109/LCOMM.2019.2897798
  • [23] I. A. Khoso, X. Dai, M. N. Irshad, A. Khan, and X. Wang, “A low-complexity data detection algorithm for massive mimo systems,” IEEE Access, vol. 7, pp. 39 341-39 351, 2019. https://doi.org/10.1109/ACCESS.2019.2907366 .
  • [24] J. Kermoal, L. Schumacher, K. Pedersen, P. Mogensen, and F. Frederiksen, “A stochastic mimo radio channel model with experimental validation,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 6, pp. 1211-1226, 2002. https://doi.org/10.1109/JSAC.2002.801223
  • [25] B. E. Godana and T. Ekman, “Parametrization based limited feedback design for correlated mimo channels using new statistical models,” IEEE Transactions on Wireless Communications, vol. 12, no. 10, pp. 5172-5184, 2013. https://doi.org/10.1109/TWC.2013.092013.130045
  • [26] L. Liu, G. Peng, P. Wang, S. Zhou, Q. Wei, S. Yin, and S. Wei, “Energy-and area-efficient recursive-conjugate-gradient-based mmse detector for massive mimo systems,” IEEE Transactions on Signal Processing, vol. 68, pp. 573-588, 2020. https://doi.org/10.1109/TSP.2020.2964234.
  • [27] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, “High-throughput data detection for massive mu-mimo-ofdm using coordinate descent,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp. 2357-2367, 2016. https://doi.org/10.1109/TCSI.2016.2611645
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84ecfe19-e169-410c-849b-76d55f1b7d72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.