PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Rhenium abundance in molybdenites : a case study on vein-type Cu-Mo-Au mineralisation in the Qarachilar area, Sungun porphyry Cu and Siah Kamar porphyry Mo deposits, NW Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The vein-type Cu-Mo-Au mineralisation in Qarachilar, the Sungun porphyry Cu deposit (PCD) and the Siah Kamar porphyry Mo deposit (PMD) are all located at the northwestern end of the Neo Tethys-related Urumieh-Dokhtar volcano-plutonic belt of Iran. Re contents of moIybdenite samples from the Qarachilar, Sungun and Siah Kamar deposits are about 112.67-462 ppm, 53.24-252.29 ppm, and 10.44-41.05 ppm, respectively. Re contents of the first two deposits fall in the range of PCDs, while those of the latter are lower and correspond to PMDs. The relatively high Re content of the Qarachilar and Sungun molybdenites can be explained considering the low abundance of molybdenite, a mantle-dominated source for ore materials and the incorporation of oxidized and acidic hydrothermal fluids with high fCl. The high abundance of molybdenite in the Siah Kamar PMD has resulted in volume dilution of Re. Furthermore, occurrence of the main ore within the potassic alteration zone and, hence, the alkaline nature of the responsible fluids in this zone have also affected the Re content of molybdenites. Variations of the Re content in different veins/veinlets showed a negative relationship with the formation temperature of these veins, and a positive/negative relationship with the acidity/alkalinity of the hydrothermal fluids, while the grain size of molybdenites showed a positive relationship.
Słowa kluczowe
Rocznik
Strony
478--492
Opis fizyczny
Bibliogr. 73 poz., mapka, rys., tab.
Twórcy
  • University of Tabriz, Research Institute for Fundamental Sciences, Tabriz, 51666-16471, Iran
autor
  • Juniata ColIage, Department of Geology, Huntingdon, 1700 Moore St, PA, 16652 USA
autor
  • University of Durham, Department of Earth Sciences, Durham, DH1 3LE, UK
Bibliografia
  • 1. Agard, P., Monié, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B., Labrousse, L., Vrielynck, B., Jolivet, L., Yamato, P., 2006. Transient, synobduction exhumation of Zagros blue schists inferred from P-T, deformation, time and kinematic constraints: implications for Neo Tethyan wedge dynamics. Journal of Geophysical Research, 111: B11.
  • 2. Agha Nabaty, E., 2004. Geology of Iran (in Persian). Geological survey and mineral exploration Organization of Iran, Tehran.
  • 3. Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L., 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70: 385-406.
  • 4. Alavi, M., 1991. Sedimentary and structural characteristics of the paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103: 983-992.
  • 5. Amini Fazl, A., 1994. Petrology, mineralogy and geochemistry of Qaradagh intrusive body (Ordubad granite) at NW Iran (Ghoolan, Doozal, Astamal). Dissertation, Azerbaijan Republic Academy of Sciences, Baku.
  • 6. Aminzadeh, B., Shahabpour, J., Maghami, M., 2011. Variation of rhenium contents in molybdenites from the Sar Cheshmeh Cu-Mo deposit in Iran. Resource Geology, 61: 290-295.
  • 7. Berberian, M., King, G.C.P., 1981. Towards paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
  • 8. Berzina, A.N., Sotnikov, V.I., Economou-Eliopoulos, M., Eliopoulos, D.G., 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26: 91-113.
  • 9. Calagari, A.A., 2004a. Geology and fracture-related hypogene hydrothermal alteration and mineralization of porphyry copper deposit at Sungun, Iran. Journal of Geological Society of India, 64: 595-618.
  • 10. Calagari, A.A., 2004b. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 23: 179-189.
  • 11. Cardarelli, F., 2008. Materials Handbook: a Concise Desktop Reference. 2nd edition, Springer, London.
  • 12. Cohen, A.S., Waters, F.G., 1996. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Analytica Chimica Acta, 332: 269-275.
  • 13. Creaser, R.A., Papanastassiou, D.A., Wasserburg, G.J., 1991. Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochimica et Cosmochimica Acta, 55: 397-401.
  • 14. Dai, J.Z., Mao, J.W., Zhao, C.S., Xie, G.Q., Yang, F.Q., Qang, Y.T., 2009. New U-Pb and Re-Os age data and the geodynamic setting of the Xiaojiayingzi Mo(Fe) deposit, western Liaoning Province, Northeastern China. Ore Geology Reviews, 35: 235-244.
  • 15. Daneshvar Saein, L., 2017. Delineation of enriched zones of Mo, Cu and Re by concentration-volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran. Iranian Journal of Earth Sciences, 9: 64-72.
  • 16. Delibaş, O., Genc, Y., 2012. Re-Os molybdenite ages of granitoid-hosted Mo-Cu occurrences from central Anatolia (Turkey). Ore Geology Reviews, 44: 39-48.
  • 17. Del Moro, A., Innocenti, F., Kyriakopoulos, C., Manetti, P., Papadopoulos, P., 1988. Tertiary granitoids from Thrace (Northern Greece): Sr isotopic and petrochemical data. Neues Jahrbuch Für Mineralogie Abhandlungen, 159: 113-135.
  • 18. Economou-Eliopoulos, M., Eliopoulos, D.G., 1996. Distribution of Rhenium (Re) in Molybdenites and Mo-bearing Minerals of Greece and its Economic Significance (in Greek with English summary). Final Report, University of Athens.
  • 19. Faramazian, A.S., 1961. Regularities in the distribution of Re in the Kadzharan ore deposit. Izvest Akad. Nauka Armenian SSR, 14: 9-56.
  • 20. Filimonova, L.Y., Zhukov, N.M., Malyavka, A.G., 1984. Genetic aspects of polytypism and rhenium contents of molybdenite in porphyry copper deposits (in Russian). Geochimiya, 7: 1040-1046.
  • 21. Ghodrati, Z., 2009. Investigation on the Distribution of Mo and Other Trace Elements in the Sungun Porphyry Cu Deposit (in Persian). Dissertation, Islamic Azad University, Science and Research Branch, Tehran, Iran.
  • 22. Ghodrati, Z., 2010. Geochemical studies of trace elements in the Sungun porphyry copper deposit (in Persian). The first symposium of Iranian Society of Economic Geology: 235-240.
  • 23. Ghorbani, M., 2013. The Economic Geology of Iran: Mineral Deposits and Natural Resources. Springer, Dordrecht.
  • 24. Giles, D.L., Shilling, J.H., 1972. Variation in rhenium content of molybdenite. International Geological Congress, 24th session, section 10, Montreal, 145-152, IGC.
  • 25. Hassanpour, Sh., Rasa, I., Heidari, M., Metkan, A.A., Moayyed, M., 2010. Geology, alteration and mineralization in the Haft Cheshmeh porphyry Cu-Mo deposit (in Persian with English summary). Iranian Journal of Geology, 15: 15-28.
  • 26. Ishihara, S., 1988. Rhenium contents of molybdenites in granitoid series rocks in Japan. Economic Geology, 83: 1047-1051.
  • 27. Ivanov, V.V., Yushko-Zakharova, O.E., 1989. Rhenium (in Russian). In: Siderophile and Chalcophile Rare Metals Geological Directory (eds. V.V. Ivanov et al.): 425- 459. Nedra, Moscow.
  • 28. Karimi, M., Azadi, M.H., Khaloui, Sh., Ghadami, M., Attarzadeh, P., Noori, R., 2011. The study of mineralogy, alteration and genesis of Chah Firouzeh porphyry copper deposits. The first national symposium on geology of Iran, Islamic Azad University, Shiraz Branch, Iran.
  • 29. Khakzad, A., Shaban, S., 2006. Study of mineralograghy, petrology, alteration and lithochemistry of Bagh Khoshk copper deposit (northeast Sirjan) (in Persian with English summary). Geosciences, 15: 68-85.
  • 30. Khaleghi, F., Hosseinzadeh, Gh., Rasa, I., Moayyed, M., 2013. Geological and geochemical characteristics of the Siah Kamar porphyry molybdenum deposit, west of Mianeh, NW Iran (in Persian with English summary). Geosciences, 22: 187-196.
  • 31. Komeili, S.S., Khalili, M., Asadi Haroni, H., Bagheri, H., Ayati, F., 2016. The nature of hydrothermal fluids in the Kahang porphyry copper deposit (Northeast of Isfahan) based on mineralography, fluid inclusion and stable isotopic datax (in Persian with English summary). Journal of Economic Geology, 8: 285-305.
  • 32. Li, Y., Selby, D., Condon, D., Tapster, S., 2017. Cyclic magmatic-hydrothermal evolution in porphyry systems: high-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit. Economic Geology, 112: 1419-1440.
  • 33. Magakian, I.G., Amiryan, Sh.O., Zaryan, R.N., Karamyan, K.A., 1984. Minerals of ore formations of Armenian SSR, vol. 1 (in Russian). Publishing House of Armenian SSR, Yerevan.
  • 34. Mao, J.W., Zhang, Z.C., Zhang, Z.H., Du, A.D., 1999. Re-Os isotopic dating of molybdenite in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountain and its geological significance. Geochimica et Cosmochimica Acta, 63: 1815-1818.
  • 35. Mao, J.W., Du, A.D., Seltmann, R., Yu, J.J., 2003. Re-Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite, central Urals, Russia. Mineralium Deposita, 38: 251-257.
  • 36. Mao, J.W., Wang, Y.T., Lehmann, B., Yu, J.J., Du, A.D., Mei, Y.X., Li, Y.F., Zang, W.S., Stein, H.J., Zhou, T.F., 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews, 29: 307-324.
  • 37. Mathur, R., 2000. Re-Os Isotopes of Base Metal Porphyry Deposits. Dissertation, University of Arizona, Tucson.
  • 38. McCandless, T.E., Ruiz, J., Campbell, A.R., 1993. Rhenium behavior in molybdenite in hypogene and near-surface environments: implications for Re-Os geochronometry. Geochimica et Cosmochimica Acta, 57: 889-905.
  • 39. Mehrpartou, M, Mirzaei, M., Alaei, S., 1997. Geologic map of Siahrood, scale 1:100,000. Geological Survey of Iran, Tehran, 1 sheet.
  • 40. Mirnejad, H., Mathur, R., Hassanzadeh, J., Shafie, B., Nourali, S., 2013. Linking Cu Mineralization to host porphyry emplacement: Re-Os ages of molybdenites versus U-Pb ages of zircons and sulfur isotope compositions of pyrite and chalcopyrite from the Iju and Dkuh porphyry deposits in southeast Iran. Economic Geology, 108: 861-870.
  • 41. Melfos, V., Voudouris, P., Arikas, K., Vavelidis, M., 2001. Rhenium-rich molybdenites in Thraccian porphyry Cu-Mo occurrences, NE Greece (in Greek with English summary). Bulletin of Geological Society of Greece, 34: 1015-1022.
  • 42. Mokhtari, M.A.A., 2008. Petrology, Geochemistry and Petrogenesis of Gharadagh Batholith (East of Siahrood-East Azarbaidjan) and its ReIated Skarn (in Persian). Dissertation, University of Tarbiat Modares, Tehran, Iran.
  • 43. Mokhtari, M.A.A., Moein Vaziri, H., Ghorbani, M.R., Mehrparto, M., 2013. Geology and geochemistry of Aniq-Qarachilar Au-Cu-Mo mineralization (NE of Kharvana, eastern Azarbaijan) (in Persian with English summary). Geosciences, 90: 135-150.
  • 44. Moritz, R., Melkonyan, R., Selby, D., Popkhadze, N., Gugushvili, V., Tayan, R., Ramazanov, V., 2016. Metallogeny of the Lesser Caucasus: from arc construction to postcollision evolution. Special Publication, Society of Economic Geologists, 19:157-192.
  • 45. Nabavy, H., 1976. An Introduction to the Geology of Iran (in Persian). Geological Survey of Iran, Tehran.
  • 46. Newberry, R.J.J., 1979a. Polytypism in molybdenite: (I). a non-equilibrium impurity-induced phenomenon. American Mineralogist, 64: 758-767.
  • 47. Newberry, R.J.J., 1979b. Polytypism in molybdenite: (II). Relationships between polytypism, ore deposition, alteration stages and rhenium contents. American Mineralogist, 64: 768-775.
  • 48. Pars Olang, 2004. Lithologic Variations in Sungun Porphyry Cu Deposit (in Persian). National Iranian Copper Industries Company, Tehran.
  • 49. Pearson, D., Woodland, S., 2000. Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chemical Geology, 165: 87-107.
  • 50. Popov, V.S., 1977. Geology and genesis of copper and molybdenum porphyry deposits (in Russian). Nauka, Moscow.
  • 51. Rezai Aghdam, M., Sohrabi, G., 2010. Investigation on the geochemistry of alteration and its relationship with the Mo and Cu mineralization in Gharachilar-Gharadareh area (NW Iran). Journal of Sciences of Islamic Azad University, 77: 129-149.
  • 52. Selby, D., Creaser, R.A., 2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, 96: 197-204.
  • 53. Shafiei, B., Shahabpour, J., 2008. Gold distribution in porphyry copper deposits of Kerman Region, Southeastern Iran. Journal of Sciences, Islamic Republic of Iran, 19: 247-260.
  • 54. Simmonds, V., Moazzen, M., 2015. Re-Os dating of molybdenites from Oligocene Cu-Mo-Au mineralized veins in Qarachilar area, Qaradagh batholith (northwest Iran): implications for understanding Cenozoic mineralization in South Armenia, Nakhchivan, and Iran. International Geology Review, 57: 290-304.
  • 55. Simmonds, V., Moazzen, M., 2016. Fluid inclusion studies on Cu-Mo-Au bearing quartz-sulphide veins and veinlets in Qarachilar area, Qaradagh pluton (NW Iran). Periodico di Mineralogia, 85: 261-276.
  • 56. Simmonds, V., Moazzen, M., Selby, D., 2019. U-Pb zircon and Re-Os molybdenite age of the Siah Kamar porphyry molybdenum deposit, NW Iran. International Geology Review, 61: 1786-1802.
  • 57. Simmonds, V., Moazzen, M., Mathur, R., 2017. Constraining the timing of porphyry mineralization in northwest Iran in relation to Lesser Caucasus and Central Iran; Re-Os age data for Sungun porphyry Cu-Mo deposit. International Geology Review, 59: 1561-1574.
  • 58. Stein, H.J., Markey, R.J., Morgan, J.W., Du, A.D., Shu, Y., 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shanxi Province, China. Economic Geology, 92: 827-835.
  • 59. Stein, H.J., Markey, R.J., Morgan, J.W., Hannah, J.L., Schersten, A., 2001. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova, 13: 479-486.
  • 60. Stein, H.J., Markowiak, M., Mikulski, S.Z., 2005. Metamorphic to magmatic transition captured at the Myszków Mo-W deposit, southern Poland. In: Mineral Deposit Research: Meeting the Global Chalienge (eds. J. Mao and F.P. Bierlein): 833-836. Springer, Berlin, Heidelberg.
  • 61. Sun, Y., Xu, P., Li, J., Chu, Z., Yan Wang, C., 2010. A practical method for determination of molybdenite Re-Os age by inductively coupled plasma-mass spectrometry combined with Carius tube-HNO3 digestion. Analytical Methods, 2: 575-581.
  • 62. Taghipour, N., Aftabi, A, Mathur, R., 2008. Geology and Re-Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit, Iran. Resource Geology, 58: 143-160.
  • 63. Todorov, T., Staikov, M., 1985. Rhenium content in molybdenite from ore mineralizations in Bulgaria. Geologica Balcanica, 15: 45-58.
  • 64. U.S. Geological Survey, 2019. Mineral Resource Data System (MRDS): U.S. Geological Survey Database, http://mrdata.usgs.gov/mrdata.
  • 65. Voudouris, P., 2006. Comparative mineralogical study of Tertiary Te-rich epithermal and porphyry systems in northeastern Greece. Mineralogy and Petrology, 87: 241-275.
  • 66. Voudouris, P., Melfos, V., Spry, P., Bindi, L., Kartal, T., Arikas, K., Moritz, R., Ortelli, M., 2009. Rhenium-rich molybdenite and rheniite (ReS2) in the Pagoni Rach-Kirki Mo-Cu-Te-Ag-Au deposit, northern Greece: implications for the rhenium geochemistry of porphyry style Cu-Mo and Mo mineralization. Canadian Mineralogist, 47: 1013-1036.
  • 67. Voudouris, P., Melfos, V., Spry, P., Bindi, L., Moritz, R., Ortelli, M., Kartal, T., 2013. Extremely Re-rich molybdenite from porphyry Cu-Mo-Au prospects in northeastern Greece: mode of occurrence, causes of enrichment, and implications for gold exploration. Minerals, 3: 165-191.
  • 68. Xiong, Y., Wood, S., 1999. Experimental determination of the solubility of ReO2 and dominant oxidation stage in hydrothermal solutions. Chemical Geology, 158: 245-256.
  • 69. Xiong, Y., Wood, S., 2001. Hydrothermal transport and deposition of rhenium under subcritical conditions (up to 200°C) in light of experimental studies. Economic Geology, 96: 1429-1444.
  • 70. Xiong, Y., Wood, S., 2002. Experimental determination of the hydrothermal solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions. Geochemical Transactions, 3: 1-10.
  • 71. Zakeri, L., 2013. Investigation on geology, mineralization, alteration, geochemistry and genesis of Gharachilar ore deposit, Shah Jahan batholith (East Azarbaidjan). Dissertation, University of Tabriz, Tabriz, Iran.
  • 72. Zakeri, L., Malek-Ghasemi, F., Jahangiri, A., Moazzen, M., 2011. Metallogenic implications of biotite chemical composition: Sample from Cu-Mo-Au mineralized granitoids of the Shah Jahan Batholith, NW Iran. Central European Geology, 54: 271-294.
  • 73. Zarnab Ekteshaf (Consultant Engineers), 2009. Geologic and alteration studies in Siah Kamar area with 1:25 000 scale (in Persian). Iranian National Cupper Industries Company, Tehran.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84eb895e-ba61-46f2-9987-ea4e5c36f493
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.