PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized Shapley value cost allocation model for carriers’ collaboration in road haulage transportation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transportation carriers can achieve significant profit or cost savings if they collaborate rather than engage in wasteful competition among themselves. However, the challenge in cooperative game theory is finding the optimal cost allocation methods to support pecuniary expectations of coalition members. In this paper, we determine cost allocation model that supports horizontal collaboration among transportation carriers involved in downstream distribution of packaged cement from shipper’s processing plant to customer locations in selected states in Nigeria. The study focuses on the relationship between the shipper and haulage carriers that service the transport needs of its geographically distributed customers. A cost allocation mechanism based on game theory is proposed to implement win-win collaboration among the carriers. We applied a Shapley value cost allocation model to fairly distribute the cost savings from operation of five grand coalitions (S) formed by the carriers. The Shapely values were then optimized with mixed integer programming model to realize optimal cost savings from the coalition. The result revealed that the coalitions: S3 (N165,173,700.00) and S4 (N27,200,960.00) contributed significantly to the optimal savings apart from their initial contributions. The path that corresponds to S3 (X3) is the coalition providing service from Calabar to Jos while the path that corresponds to S4 (X4) is the coalition providing service from Calabar to Owerri and the optimal savings is N48,286,760,000.00. Based on these results, we therefore encourage horizontal collaboration among haulage transport providers in their overall interest, that of the shipper and hence ensure supply or distribution chain cost efficiency.
Twórcy
  • Department of Statistics, Federal University of Technology Owerri, Nigeria
  • Department of Maritime Technology and Logistics, Federal University of Technology Owerri, Nigeria
  • Department of Logistics & Transport Technology, Federal University of Technology Owerri, Nigeria
  • Department of Maritime Technology and Logistics, Federal University of Technology Owerri, Nigeri
  • Department of Nautical Science, Federal College of Fisheries and Marine Technology, Lagos, Nigeria
  • Department of Urban and Regional Planning, Federal University of Technology Owerri, Nigeria
  • Department of Transport Management, Ibrahim Badamasi Babangida University Lapai, Nigeria
Bibliografia
  • Aziz, H., Cahan, C., Gretton, C., Kilby, P., Mattei, N., & Walsh, T. (2016). A study of proxies for shapley allocations of transport costs. Journal of Artificial Intelligence Research, 56, 573-611. https://doi.org/10.48550/arXiv.1408.4901
  • Dai, B., & Chen, H. (2012). Profit allocation mechanisms for carrier collaboration in pickup and delivery service. Computers & Industrial Engineering, 62(2), 633-643. https://doi.org/10.1016/j.cie.2011.11.029
  • Dantzig, G. B. (2002). Linear programming. Operations research, 50(1), 42-47. https://doi.org/10.1287/opre.50.1.42.17798
  • Darby-Dowman, K., & Wilson, J. M. (2002). Developments in linear and integer programming. Journal of the Operational Research Society, 53(10), 1065-1071. https://doi.org/10.1057/palgrave.jors.2601435
  • David, G.L., & Yinyu, Y. (2008). Linear and Non-linear Programming. 3rd ed. Springer, New York.
  • Eren Akyol, D., & Sarısakal, O. (2023). Horizontal cooperation in subcontracting: A case study in home textile industry. Mathematical Problems in Engineering, 12, 1-13. Available: https://doi.org/10.1155/2023/8256116 Accessed 04/04/24
  • Frisk, M., Göthe-Lundgren, M., Jörnsten, K., & Rönnqvist, M. (2010). Cost allocation in collaborative forest transportation. European Journal of Operational Research, 205(2), 448-458. https://doi.org/10.1016/j.ejor.2010.01.015
  • Gupta, P. K., & Hira, D. S. (1991). Problems in operations research: principles and solutions. S. Chand and Company Ltd, New Delhi.
  • Hallefjord, Å., & Storøy, S. (1990). Aggregation and disaggregation in integer programming problems. Operations Research, 38(4), 619-623. https://doi.org/10.1287/opre.38.4.619
  • Ivanov, D., Pavlov, A., & Sokolov, B. (2014). Optimal distribution (re) planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics. European Journal of Operational Research, 237(2), 758-770. https://doi.org/10.1016/j.ejor.2014.02.023
  • Kayikci, Y. (2020). Analysis of Cost Allocation Methods in International Sea-Rail Multimodal Freight Transportation. Yaşar Üniversitesi E-Dergisi, 15(57), 129-142. https://doi.org/10.19168/jyasar.568692 (in English).
  • Liittschwager, J. M., & Wang, C. (1978). Integer programming solution of a classification problem. Management Science, 24(14), 1515-1525. https://doi.org/10.1287/mnsc.24.14.1515
  • Liu, P., Wu, Y., & Xu, N. (2010). Allocating collaborative profit in less-than-truckload carrier alliance. Journal of Service science and Management, 3(01), 143-149. https://doi.org/10.4236/jssm.2010.31018.
  • Malawski, M., Wieczorek, A., & Sosnowska, H. (2012). Konkurencja i kooperacja: teoria gier w ekonomii i naukach społecznych. Państwowe Wydawnictwo Naukowe PWN.
  • Masimli, A. (2023). Shapley Value for Shortest Path Routing in Dynamic Networks. Preprints.org. https://doi.org/10.20944/preprints202304.1115.v1
  • Ramirez-Beltran, N. D. (1995). Integer programming to minimize labour costs. Journal of the Operational Research Society, 46(2), 139-146. https://doi.org/10.1057/jors.1995.20
  • Rao, S.S. (2009). Engineering Optimization: Theory and Practice. 4th ed. John Wiley & Sons Inc. New Jersey. https://doi.org/10.1002/9780470549124
  • Rappos, E., & Thompson, E. B. (2008). An integer programming approach to optimize Housing Benefit data retrieval. Journal of the Operational Research Society, 59(2), 182-185. https://doi.org/10.1057/palgrave.jors.2602558
  • Rifki, O., Danloup, N., Guo, Y., & Allaoui, H. (2023). An aided decision framework based on optimisation and game theory for a green and shared vehicle routing problem. IFAC-PapersOnLine, 56(2), 2552-2557. https://doi.org/10.1016/j.ifacol.2023.10.1337
  • Tatarczak, A. (2018). A Framework to Support Coalition Formation in the Fourth Party Logistics Supply Chain Coalition. Acta Universitatis Lodziensis. Folia Oeconomica, 5(338), 195-212. https://doi.org/10.18778/0208-6018.338.12
  • Ugwuanyi, G.O.C. (2007). Quantitative Techniques: A Managerial. Ranco Ventures, Enugu Nigeria.
  • Vanovermeire, C., Vercruysse, D., & Sörensen, K. (2014). Analysis of different cost allocation methods in a collaborative transport setting. International Journal of Engineering Management and Economics, 4(2), 132-150. https://doi.org/10.1504/IJEME.2014.066576
  • Wang, Y. (2023). A collaborative approach based on Shapley value for carriers in the supply chain distribution. Heliyon, 9(7), e17967. https://doi.org/10.1016/j.heliyon.2023.e17967
  • Zaremba, L., Zaremba, C. S., & Suchenek, M. (2017). Modification of shapley value and its implementation in decision making. Foundations of Management, 9(1), 257-272. https://doi.org/10.1515/fman-2017-0020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84e98c3b-9393-4d61-b6de-e4fd4837c508
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.