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Abstract 

The proposed and verified the technique of finding a finite number of first natural frequencies for 
geometrically nonlinear vibrations of layered elongated cylindrical panels at discrete consideration of 

components. The influence of the radius of curvature on the natural frequencies of three- and five-layered 

panels is investigated. The dependence between the volume of filler three-layer panels and the lowest natural 
frequency has been established. 
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1. Introduction  

The flexible layered cylindrical panels constitute a significant part of various structures 

and hardware. The specificity of the functional purpose of components of layers causes a 

sharp difference in their physical and mechanical properties and thickness, causing the 

need for discrete consideration of the thickness of the structure, of the above mentioned 

objects, as the averaged approach can lead to significant errors when assessing the ability 

to support or determine their amplitude and frequency characteristics. 

Effects of intensive dynamic (including cyclic) loads are usually the cause of 

geometrically non-linear stress-strain state. Therefore, there is a need for the 

development and verification of the methods for determining the parameters of free 

vibrations of geometrically nonlinear deformation of layered cylindrical panels for 

consideration of discrete components. 
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Free vibrations of the shell structural elements are studied using numerical and 

experimental methods [1–3] or only pliability to transversal shear [4]. Some analytical 

results for pliability to transversal compression are given in [8]. 

In this paper proposed the technique and with its using the investigated the free 

geometrically nonlinear vibrations of layered cylindrical panels with into account all the 

physical and mechanical properties of components in the spatial statement of the 

problem. 

2. The problem statement for a particular component of a layered panel 

A curved anisotropic elastic layer with thickness h  we assume in a natural mixed 

system of coordinates 321 ,, aaa  on the median surface. This surface is formed by the 

motion of the line 0;0 31 == aa  on the segment of arbitrary guiding. We consider that 

the layer is significantly larger along the axis 2a  to the length of the section arc 02 =a  

of the median surface 03 =a . So we have an elongated panel. If the conditions of fixing 

the ends of the panel 0
11 aa ±=  and the initial conditions are independent of the 

coordinate 2a , then through a little influence of conditions of fixing the edges 

0
22 aa ±= , the functions, that determine the characteristics of geometrically nonlinear 

vibration processes in the plane of the median section, are dependent from 1a , 3a . To 

find these functions we have [9]: 

- motion equations 
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- relation between the components ijS of the nonsymmetrical Kirchhoff 

stress tensor Ŝ  and the components 
iks  of the symmetric Piola stress tensor Ŝ  
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In equations (1) and (2) A
~

 is the tensor of elastic properties of anisotropic layer, and 

r  is its density. 

Boundary conditions on the front surface of the panel 2/3 h±=a  in the case of its 

belonging to the layered structure are shown below, and initial conditions have the form 
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3. The layered panels 

Assume that a panel consists of N  layers (see Fig. 1). Each k-th layer is considered as a 

separate thin panel with its own mechanical and material characteristics. Hooke’s law is 

different for each layer: 

kkk Q es ][)( = ,    ,,...,1 Nk =  (7) 

where ][ kQ  is tensor of elastic properties of anisotropic k-th layer. 

 

 
 

Figure 1. Layered cylindrical panel with hinges fixed on the elongated edges 

 

Assuming that the value of 3a  coordinate at the top of k-th layer is kh , and 2/0 hh -= , 

the equations (1) for a layered structure are written as 

,
2

)(23

1

)(

t

u
S

k
j

i

ijk
i

¶

¶
=Ñå

=

r  (8) 

],[],[),( 1
0
1

0
131 kk hh -´-=WÎ aaaa ,   .,...,1 Nk =  

The contact conditions between the layers are 
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and on the lower and upper facial surfaces of the layered structure we have 
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At the elongated ends of the panel 0
11 aa ±= under the conditions of the fixing the 

hinge on the lower surface of the front 2/2 h-=a  the boundary conditions have the 

form 

0),,( 3
1)( =taS ik a ,  ,,1 Nk =  (12) 
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4. Approximations 

Assuming that each k-th layer is thin, quadratic approximations along 3a  coordinate are 

used for components of elastic displacement vector 1u  and 3u  [10]: 
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For finding the unknown coefficients )( 1

)( ak

iju
 

in (14), approximation by the 

tangential coordinate 1a  was used on one-dimensional isoperimetric linear finite 

elements [10]: 
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5. The discretized problem  

Considered above differential formulation of the problem of geometrically nonlinear free 

vibrations for single layer is equivalent to the problem of minimizing the functional L  

[10]: 
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Boundary conditions (11), (12) and contact conditions (9), (10) are a natural for the 

variation formulation of the problem (16) [10], but conditions (13) must be take into 

account during solving.  

In a case layered panel we obtain: 
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After substituting (14), (15), and using (4) into (8) in (17) and composing results 

together we obtain: 
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where )}({}{ tuu =  – vector of values of the coefficients 
))(( ek

ijmu  at nodes on the finite-

element of k-th layer; LK  – linear, and NLK  – nonlinear components of stiffness 

matrix; M  – matrix of mass [5]. Stiffness and mass matrices composed from M matrices 

for each layer. 

For solving discretized problem (18) perturbation method is used, that is described 

in [5, 6]. 

6. Numerical results 

6.1. Verification of the proposed technique 

Consider a cylindrical five-layer panel, the edges of which are fixed by hinges at the bottom of 

the front plane (see Fig. 1.) with geometrical 1=l m; 01,0=h m and physical-mechanical 

characteristics: 

.25,0,5,0,6,0,40 12232131221 ===== nEGEGGEE  

 

For the analysis of reliability of the results we applied the proposed technique to the 

problem, the solutions of which are known [4]. Consider a cylindrical panel with radius 
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curvature 0=K . For finding the values of natural frequencies apply partition at 50 finite 

elements by coordinate 1a . 

In Table 1 compared the values LNL ww /  obtained at the amplitudes 
h

wmax  for free 

vibrations of five-layered panel with the results from the work [4]. 

Table 1. 

 
 

[4] Proposed technique 

0,2  1,0313 1,0401 

0,4  1,1198 1,1214 

0,6  1,2536 1,2695 

0,8 1,4199 1,4418 

1,0 1,6086 1,6588 

1,2 1,8127 1,8627 

 

 
 

Figure 2. Comparison of amplitude-frequency characteristics obtained using  

the method of perturbation and results of work [4] 

 

Fig. 2 shows the skeletal curves [11], constructed using the proposed technique ( ) and the 

results given in the work [4] (o). 
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Also, the influence of the radius of curvature K  on the free vibrations of the panel is 

investigation. Fig. 3 shows the dependence of the lowest natural frequency of the radius 

of curvature of five-layered panels from carbon fiber. 

 

 
 

Figure 3. Dependence of the lowest natural frequency of the radius of  

curvature of the cylindrical panels 

 

The maximum relative error in the Table 1 does not exceed 3%, which shows the 

effectiveness of the proposed technique. Comparative analysis of the graphs in Fig. 2 shows the 

reliability of the results obtained using proposed technique. Also established, that the main 

amplitude of natural vibrations increases with increasing radius curvature of the panel. 

6.2. Three-layered panel 

We considered a layered plate-strip with elongated edges that are fixed with stationary 

hinges on the lower plane (see Fig. 4). Geometrical characteristics of plane are ml 1= , 

mh 1,0= . It consists of three layers with following characteristics:  

1) Rubber – 29 /101.0 mNE ×= , ;49,0=n  

2) Steel – 29 /10210 mNE ×= , .3,0=n  
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Figure 4. Panel with three layers 

In Table 2 first five natural frequencies is shown for panel consisting of three layers 

where steel layers have thickness 0.01m and rubber has thickness 0.08m. 

[1] Table 2. 

n  
nw  

1 283000 

2 1019000 

3 1457300 

4 1839600 

5 2615200 

 

In Table 3 dependency between first natural frequencies and thickness of middle 

layer (rubber layer) thickness is shown. 

[2] Table 3. 

h

hrubber  
1w  

0.9 225650 

0.8 283000 

0.7 372770 

0.6 490850 

0.5 635100 
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a) 

 
b) 

 

Figure 5. View panels in different modes: a) – the first mode; b) – second 

 

In the Fig. 5 we show the vibrations of the structure for first and second modes of 

the panel consisting of three layers where the steel layers have the thickness 0.01m and 

the rubber has the thickness 0.08m. 

[3] Table 4. 

K  1w  

0 283000 

0.5 254200 

1 232000 

2 218700 

 

In Table 4 dependency between the radius of curvature and first natural frequency of 

the panel that consists of three layers where the steel layers have thickness 0.01m and the 

rubber has thickness 0.08m is shown. 

For considered above panel we can make next conclusions:  

1. the more matrix (rubber) component are included in the panel, the less is the first 

natural frequency; 

2. the more radius curvature is the panel, the less is the first natural frequency of it. 

7. Conclusion 

We can make a conclusion that the method proposed in this paper is suitable for the 

layered panel because it provides logical results (Fig.5). Also this method can use at 

arbitrary amount of layers in the panel. 
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