PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Material parameters of antimonides and amorphous materials for modelling the mid-infrared lasers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proper modelling of semiconductor device operation with full complexity of many interrelated physical phenomena taking place within its volume is possible only when the material parameters which appear in each part of the self-consistent model are known. Therefore, it is necessary to include in calculations the material composition, temperature, carrier concentration, and wavelength dependences in electrical, thermal, recombination and optical models. In this work we present a complete set of material parameters which we obtained basing mostly on the experimental data found in several dozen publications. To refine the number of equations, we restrict the material list to those which are typically used in edge-emitting lasers and vertical-cavity surface-emitting lasers designed for mid-infrared emission.
Czasopismo
Rocznik
Strony
227--240
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Photonics Group, Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
  • Photonics Group, Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
Bibliografia
  • [1] PISKORSKI Ł., SARZAŁA R.P., GaInNAs quantum-well vertical-cavity surface-emitting lasers emitting at 2.33 μm, Bulletin of the Polish Academy of Sciences – Technical Sciences 61(3), 2013, pp. 737–744.
  • [2] PISKORSKI Ł., SARZAŁA R.P., NAKWASKI W., Investigation of temperature characteristics of modern InAsP/InGaAsP multi-quantum-well TJ-VCSELs for optical fibre communication, Opto-Electronics Review 19(3), 2011, pp. 320–326.
  • [3] KASHANI-SHIRAZI K., VIZBARAS K., BACHMANN A., ARAFIN S., AMANN M.-C., Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-μ m wavelength range, IEEE Photonics Technology Letters 21(16), 2009, pp. 1106–1108
  • [4] ARAFIN S., BACHMANN A., KASHANI-SHIRAZI K., AMANN M.-C., Continuous-wave electrically-pumped GaSb-based VCSELs at ~2.6 μ m operating up to 50°C, Proceedings of the 22nd Annual Meeting of the IEEE Photonics Society, October 4–8, 2009, Belek-Antalya, Turkey, pp. 837–838.
  • [5] CZICHOS H., SAITO T., SMITH L.M., Springer Handbook of Materials Measurement Methods, 1st Ed., Springer, Berlin, Heidelberg, 2006, p. 458.
  • [6] ADACHI S., Properties of Group-IV, III-V and II-VI Semiconductors, Wiley, Chichester, 2005.
  • [7] CHIU T.H., DITZENBERGER J.A., LUFTMAN H.S., TSANG W.T., HA N.T., Te doping study in molecular beam epitaxial growth of GaSb using Sb2Te3, Applied Physics Letters 56(17), 1990, pp. 1688–1690.
  • [8] MIROWSKA A., ORŁOWSKI W., Domieszkowanie monokryształów antymonku galu na typ przewodnictwa n oraz na typ p, Materiały Elektroniczne 38, 2010, pp. 17–32 (in Polish).
  • [9] CHEN J.F., CHO A.Y., Characterization of Te-doped GaSb grown by molecular beam epitaxy using SnTe, Journal of Applied Physics 70(1), 1991, pp. 277–281.
  • [10] CHANG-EUN KIM, KUROSAKI K., MUTA H., OHISHI Y., YAMANAKA S., Thermoelectric properties of Zn-doped GaSb, Journal of Applied Physics 111(4), 2012, article 043704.
  • [11] YANO M., SUZUKI Y., ISHII T., MATSUSHIMA Y., KIMATA M., Molecular beam epitaxy of GaSb and GaSbxAs1–x, Japanese Journal of Applied Physics 17(12), 1978, pp. 2091–2096.
  • [12] SUBBANNA S., TUTTLE G., KROEMER H., N-type doping of gallium antimonide and aluminum antimonide grown by molecular beam epitaxy using lead telluride as a tellurium dopant source, Journal of Electronic Materials 17(4), 1988, pp. 297–303.
  • [13] WANG C.A., SHIAU D.A., HUANG R.K., HARRIS C.T., CONNORS M.K., Organometallic vapor phase epitaxy of n-GaSb and n-GalnAsSb for low resistance ohmic contacts, Journal of Crystal Growth 261(2–3), 2004, pp. 379–384.
  • [14] TURNER G.W., EGLASH S.J., STRAUSS A.J., Molecular-beam epitaxy growth of high-mobility n-GaSb, Journal of Vacuum Science and Technology B 11(3), 1993, pp. 864–867.
  • [15] PINO R., KO Y., DUTTA P.S., High-resistivity GaSb bulk crystals grown by the vertical Bridgman method, Journal of Electronic Materials 33(9), 2004, pp. 1012–1015.
  • [16] JOHNSON G.R., CAVENETT B.C., KERR T.M., KIRBY P.B., WOOD C.E.C., Optical, Hall and cyclotron resonance measurements of GaSb grown by molecular beam epitaxy, Semiconductor Science and Technology 3(12), 1988, pp. 1157–1165.
  • [17] STIRN R.J., BECKER W.M., Galvanomagnetic effects in p-type AlSb, Physical Review 148(2), 1966, pp. 907–919.
  • [18] ADACHI S., Handbook on Physical Properties of Semiconductors, Vol. 2, Springer, Berlin, Heidelberg, 2004, p. 196.
  • [19] HARMAND J.C., KOHL A., JUHEL M., LE ROUX G., Molecular beam epitaxy of AlGaAsSb system for 1.55 μ m Bragg mirrors, Journal of Crystal Growth 175/176, 1997, pp. 372–376.
  • [20] MADELUNG O., RÖSSLER U, SCHULZ M., Group IV Elements, IV-IV and III-V Compounds, Springer, Berlin, 2002.
  • [21] WANG C.A., CHOI H.K., OMVPE growth of GaInAsSb/AlGaAsSb for quantum-well diode lasers, Journal of Electronic Materials 26(10), 1997, pp. 1231–1236.
  • [22] BENNETT B.R., MOORE W.J., YANG M.J., SHANABROOK B.V., Transport properties of Be- and Si-doped AlSb, Journal of Applied Physics 87(11), 2000, pp. 7876–7879.
  • [23] BARASKAR A., JAIN V., WISTEY M.A., SINGISETTI U., YONG-JU L. THIBEAULT B., GOSSARD A., RODWELL M.J.W., High doping effects on in-situ Ohmic contacts to n-InAs, Proceedings of the 22nd International Conference on Indium Phosphide and Related Materials, May 31–June 4, 2010, Kagawa, Japan.
  • [24] MURDIN B.N., LITVINENKO K., ALLAM J., PIDGEON C.R., BIRD M., MORRISON K., ZHANG T., CLOWES S.K., BRANFORD W.R., HARRIS J., COHEN L.F., Temperature and doping dependence of spin relaxation in n-InAs, Physical Review B 72(8), 2005, article 085346.
  • [25] LI LI-GONG, LIU SHU-MAN, LUO SHUAI, YANG TAO, WANG LI-JUN, LIU FENG-QI, YE XIAO-LING, XU BO, WANG ZHAN-GUO, Metalorganic chemical vapor deposition growth of InAs/GaSb superlattices on GaAs substrates and doping studies of p-GaSb and n-InAs, Chinese Physics Letters 29(7), 2012, article 076801.
  • [26] DIAMOND A.S., WEISS D. S., Handbook of Imaging Materials, 2nd Ed., Marcel Dekker, New York, Basel, 2002, p. 630.
  • [27] SHACKELFORD J.F., ALEXANDER W., CRC Materials Science and Engineering Handbook, 3rd Ed., CRC Press LLC, Boca Raton 2001, chap. 7.
  • [28] GARNACHE A., OUVRARD A., CERUTTI L., BARAT D., VICET A., GENTY F., ROUILLARD Y., ROMANINI D., CERDA-MENDEZ E.A., 2–2.7 μ m single frequency tunable Sb-based lasers operating in CW at RT: microcavity and external cavity VCSELs, DFB, Proceedings of SPIE 6184, 2006, article 61840N.
  • [29] ANIKEEV S., DONETSKY D., BELENKY G., LURYI S., WANG C.A., BORREGO J.M., NICHOLS G., Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminescence, Applied Physics Letters 83(16), 2003, pp. 3317–3319.
  • [30] DONETSKY D., ANIKEEV S., GU N., BELENKY G., LURYI S., WANG C.A., SHIAU D.A., DASHIELL M., BEAUSANG J., NICHOLS G., Analysis of recombination processes in 0.5–0.6 eV epitaxial GaInAsSb lattice-matched to GaSb, Proceedings of the American Institute of Physics 738, June 14–16, 2004, Freiburg, Germany, pp. 320–328 (in Polish).
  • [31] GADEDJISSO-TOSSOU K.S., BELAHSENE S., MOHOU M.A., TOURNIÉ E., ROUILLARD Y., Recombination channels in 2.4–3.2 μ m GaInAsSb quantum-well lasers, Semiconductor Science and Technology 28(1), 2013, article 015015.
  • [32] PISKORSKI Ł., Modelling of physical phenomena in the selected VCSEL structures emitting at the second telecommunication window wavelength, PhD Thesis, Lodz University of Technology, Łódź, 2010 (in Polish).
  • [33] ADACHI S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, Wiley, Chichester, 2009, pp. 63–75.
  • [34] CAHILL D.G., KATIYAR M., ABELSON J.R., Thermal conductivity of a-Si:H thin films, Physical Review B 50(9), 1994, pp. 6077–6081.
  • [35] CAHILL D.G., Thermal conductivity measurement from 30 to 750 K: the 3ω method, Review of Scientific Instruments 61(2), 1990, pp. 802–808.
  • [36] VURGAFTMAN I., MEYER J.R., RAM-MOHAN L.R., Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics 89(11), 2001, pp. 5815–5875.
  • [37] GLISSON T.H., HAUSER J.R., LITTLEJOHN M.A., WILLIAMS C.K., Energy bandgap and lattice constant contours of III-V quaternary alloys, Journal of Electronic Materials 7(1), 1978, pp. 1–16.
  • [38] MUNOZ URIBE M., DE OLIVEIRA C.E.M., CLERICE J.H., MIRANDA R.S., ZAKIA M.B., DE CARVALHO M.M.G., PATEL N.B., Measurement of refractive index of GaSb (1.8 to 2.56 μ m) using a prism, Electronics Letters 32(3), 1996, pp. 262–264.
  • [39] ASPNES D.E., STUDNA A.A., Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Physical Review B 27(2), 1983, pp. 985–1009.
  • [40] PASKOV P.P., Refractive indices of InSb, InAs, GaSb, InAsxSb1–x, and In1–xGaxSb: effects of free carriers, Journal of Applied Physics 81(4), 1997, pp. 1890–1898.
  • [41] CHANDOLA A., PINO R., DUTTA P.S., Below bandgap optical absorption in tellurium-doped GaSb, Semiconductor Science and Technology 20(8), 2005, pp. 886–893.
  • [42] CLUGSTON D.A., BASORE P.A., Modelling free-carrier absorption in solar cells, Progress in Photovoltaics: Research and Applications 5(4), 1997, pp. 229–236.
  • [43] SANCHEZ D., Nouveau système de confinement pour le VCSEL GaSb, PhD Thesis, Université de Montpellier, Montpellier, 2012 (in French).
  • [44] ALIBERT C., SKOURI M., JOULLIE A., BENOUNA M., SADIQ S., Refractive indices of AlSb and GaSb-lattice-matched AlxGa1–xAsySb1–y in the transparent wavelength region, Journal of Applied Physics 69(5), 1991, pp. 3208–3211.
  • [45] ARAFIN S., Electrically-pumped gasb-based vertical-cavity surface-emitting lasers, PhD Thesis, Technischen Universität München, Munich, 2011.
  • [46] DO N., KLEES L., LEUNG P.T., TONG F., LEUNG W.P., TAM A.C., Temperature dependence of optical constants for amorphous silicon, Applied Physics Letters 60(18), 1992, pp. 2186–2188.
  • [47] MALITSON I. H., Interspecimen comparison of the refractive index of fused silica, Journal of the Optical Society of America 55(10), 1965, pp. 1205–1209.
  • [48] KITAMURA R., PILON L., JONASZ M., Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature, Applied Optics 46(33), 2007, 8118–8133.
  • [49] PISKORSKI Ł., WALCZAK J., DEMS M., BELING P., SARZAŁA R.P., Modelowanie i optymalizacja antymonkowych laserów typu VCSEL, Przegląd Elektrotechniczny 91, 2015, pp. 150–153 (in Polish).
  • [50] PISKORSKI Ł., SARZAŁA R.P., WALCZAK J., DEMS M., BELING P., SOKÓŁ A.K., NAKWASKI W., Transverse-mode selectivity in antimonide-based vertical-cavity surface-emitting lasers, 17th International Conference on Transparent Optical Networks (ICTON), July 5–9, 2015, Budapest, Hungary.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84e87d4c-3233-4ed9-854b-ab1170f7bace
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.