PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetotelluric sounding evidence of development of nappes in the Tuolai Sag, Yin-E Basin

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To explore the tectonic framework and features of stratigraphic distribution in the Tuolai Sag, Yin-E Basin, a 47-km-long magnetotelluric (MT) sounding measurement was performed around Well MAZD1 in the sag. During feld data acquisition, a remote reference technique was used to ensure data quality, with apparent resistivity and phase curves of all measuring points obtained using the Fourier transform, power spectrum selection, robust estimation and other methods. After MT data processing, dimensionality analysis and the degree of two-dimensional deviation indicated that the study area had the dimensionality needed for two-dimensional inversion. The major electrical axis in the sag was determined, using a multipoint–multifrequency point statistical imaging technique, to be in the WNW direction. Within the constraints of the resistivity log data for Well MAZD1, inversion results for TE and TM models were compared, after which the TM model, which corresponded well to geological conditions, was selected for conducting the nonlinear conjugate gradient method inversion and a reliable resistivity model was fnally obtained. Based on regional petrophysical properties, resistivity logging, and near-well bathymetric data, the electrical characteristics of diferent formations within the sag were obtained and a set of low-resistance clastic rock identifed in the lower Carboniferous strata. Based on an integrated analysis of the regional surface geology, tectonic setting, and depositional environment, and within the constraints of gravity to ft with electrical structure, a tectonic framework of two subsags sandwiched by an uplift is proposed for the Tuolai Sag. The scale of the northern subsag is large, with development of pre-Carboniferous nappe as well as of Carboniferous–Permian strata within the lower part of the nappe. The southern subsag is small and flled mainly with Carboniferous–Permian strata.
Czasopismo
Rocznik
Strony
91--104
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • National Research Center of Geo-exploration Technology, Langfang 065000, China
  • Key Laboratory of Eelectromagnetic Detection Technology, Ministry of Land and Resources, Langfang 065000, China
  • Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
autor
  • National Research Center of Geo-exploration Technology, Langfang 065000, China
  • Key Laboratory of Eelectromagnetic Detection Technology, Ministry of Land and Resources, Langfang 065000, China
  • Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
autor
  • National Research Center of Geo-exploration Technology, Langfang 065000, China
  • Key Laboratory of Eelectromagnetic Detection Technology, Ministry of Land and Resources, Langfang 065000, China
  • Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
  • National Research Center of Geo-exploration Technology, Langfang 065000, China
  • Key Laboratory of Eelectromagnetic Detection Technology, Ministry of Land and Resources, Langfang 065000, China
  • Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
autor
  • Xi’an Geological Survey Center, Xi’an 710000, China
autor
  • National Research Center of Geo-exploration Technology, Langfang 065000, China
  • Key Laboratory of Eelectromagnetic Detection Technology, Ministry of Land and Resources, Langfang 065000, China
  • Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
  • National Research Center of Geo-exploration Technology, Langfang 065000, China
  • Key Laboratory of Eelectromagnetic Detection Technology, Ministry of Land and Resources, Langfang 065000, China
  • Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
Bibliografia
  • 1. Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J Geophys 62(2):119–127
  • 2. Bahr K (1991) Geological noise in magnetotelluric data: a classification of distortion types. Phys Earth Planet Inter 66(1-2):0–38
  • 3. Banks RJ, Livelybrooks D, Jones PC, Longstaff R (1996) Causes of high crustal conductivity beneath the Iapetus suture zone in Great Britain. Geophys J Int 124(2):433–455. https://doi.org/10.1111/j.1365-246X.1996.tb07031.x
  • 4. Berdichevsky MN, Dmitriev VI, Pozdnjakova EE (1998) On two-dimensional interpretation of magnetotelluric soundings. Geophys J Int 133(3):585–606. https://doi.org/10.1046/j.1365-246X.1998.01333.x
  • 5. Bibby HM, Caldwell TG, Brown C (2005) Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys J Int 163(3):915–930. https://doi.org/10.1111/j.1365-246X.2005.02779.x
  • 6. Cai JT, Chen XB (2010) Refined techniques for data processing and two-dimensional inversion in magnetotelluricII: which data polarization mode should be used in 2D inversion. Chin J Geophys 53(11):2703–2714. https://doi.org/10.3969/j.issn.0001-5733.2010.11.018
  • 7. Cai JT, Chen XB, Zhao GZ (2010) Refined techniques for data processing and two-dimensional inversion in magnetotelluricI: tensor decomposition and dimensionality analysis. Chin J Geophys 53(10):2516–2526. https://doi.org/10.3969/j.issn.0001-5733.2010.10.025
  • 8. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158(2):457–469. https://doi.org/10.1111/j.1365-246X.2004.02281.x
  • 9. Chen XB, Zhao GZ, Ma X (2008) Preliminary discussion on selecting rotation direction in 2-D MT inversion. Oil Geophys Prospect 43(1):113–118,128
  • 10. Chen XB, Cai JT, Wang LF, Ye T (2014) Refined techniques for magnetotelluric data processing and two-dimensional inversion(IV): statistical image method based on multi-site, multi-frequency tensor decomposition. Chin J Geophys 57(6):1946–1957. https://doi.org/10.6038/cjg20140625
  • 11. Danda N, Rao CK, Kumar A (2017) Geoelectric structure of northern Cambay rift basin from magnetotelluric data. Earth Planets Space 69(1):140. https://doi.org/10.1186/s40623-017-0725-0
  • 12. Dong H, Wei WB, Ye GF, Jin S, Jing TE, Zhang LT, Zhang F, Xie CL (2012) Study of two dimensional magnetotelluric inversions of complex three dimensional structures. Chin J Geophys 55(12):4003–4014. https://doi.org/10.6038/j.issn.0001-5733.2012.12.012
  • 13. Egbert GD (1997) Robust multiple-station magnetotelluric data processing. Geophys J Int 130(2):475–496
  • 14. Fang H, Zhong Q, Chen SW (2013) The discovery of two conductive layers in Tuquan basin, Inner Mongolia, and its geological significance. Geol Bull China 32(8):1253–1259
  • 15. Farquharson CG, Oldenburg DW (2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys J R Astron Soc 156(3):411–425. https://doi.org/10.1111/j.1365-246X.2004.02190.x
  • 16. Geng YS, Shen QH, Du LL, Song HX (2016) Regional metamorphism and continental growth and assembly in China. Acta Petrol Sin 32(9):2579–2608
  • 17. Gillespie J, Glorie S, Xiao WJ, Zhang ZY, Collins AS, Evans N, Mcinnes B (2016) Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: insights from low-temperature thermochronology. Gondwana Res 43:107–122. https://doi.org/10.1016/j.gr.2015.10.004
  • 18. Groom RW, Bailey RC (1989) Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. J Geophys Res 94(B2):1913–1925. https://doi.org/10.1029/jb094ib02p01913
  • 19. Hansen PC (1992) Analysis of discrete Ill-posed problems by means of the L-curve. SIAM Rev 34(4):561–580. https://doi.org/10.2307/2132628
  • 20. Kappler KN (2012) A data variance technique for automated despiking of magnetotelluric data with a remote reference. Geophys Prospect 60(1):179–191
  • 21. Liu JL, Shen AB, Chen XL (2011) Application of magnetotelluric sounding for Carboniferous–Permian petroleum geological survey in Yingen-Ejin Banner basin, western Inner Mongolia. Geol Bull China 30(6):993–1000. https://doi.org/10.1007/s11589-011-0776-4
  • 22. Liu JL, Li XZ, Zhang Q (2013) The application of gravity-magnetic-magnetotelluric joint inversion to the quantitative interpretation of yin’e basin. Geophys Geochem Explor 37(5):853–858. https://doi.org/10.11720/j.issn.1000-8918.2013.5.18
  • 23. Lu JC, Chen GC, Wei XY, Li YH, Wei JS (2011) Carboniferous–Permian sedimentary formation and hydrocarbon generation conditions in Ejin Banner and its vicinities, western Inner Mongolia: a study of Carboniferous–Permian petroleum geological conditions (part 1). Geol Bull China 30(6):811–826
  • 24. Lu JC, Chen GC, Li YH, Wei XY, Wei JS, Jiang T, Shi JZ, Dang B, Zhao XM, Liu JL, Yang GY, Chen JF, Bu JJ, Han W, Li W (2012) Carboniferous–Permian geological conditions and resources perspective in Yingen-Ejin banner basin and its vicinities. Geological Publishing House, Beijing, pp 1–439
  • 25. Lu JC, Chen GC, Li YH, Wei XY, Zhao XM (2014) Main progress and achievements of the Permo-Carboniferous petroleum prospective survey in Yine Basin and its surrounding areas. Geol Surv China 1(02):35–44
  • 26. Lu JC, Zhang HA, Niu YZ, Liu HC, Chen QT, Wei JS (2017) Carboniferous–Permian petroleum conditions andexploration breakthrough in the Yingen-Ejin Basin in Inner Mongolia. Geol China 44(1):13–32
  • 27. Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66(1):174–187. https://doi.org/10.1190/1.1444893
  • 28. Shalivahan N, Bhattacharya BB (2002) How remote can the far remote reference site for magnetotelluric measurements be? J Geophys Res 107(B6):2105
  • 29. Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511614095
  • 30. Tian ZH, Xiao WJ, Zhang ZY, Lin X (2016) Fisson-track constrains on superposed folding in the Beishan orogenic belt, southernmost Altaids. Geosci Front 7(2):181–196. https://doi.org/10.1016/j.gsf.2015.11.007
  • 31. Wei PS, Zhang HQ, Chen QL (2006) Petroleum geological characteristics and exploration prospects of Yingen-Ejin Banner Basin and its vicinities. Petroleum Industry Press, Beijing, pp 1–345
  • 32. Ye GF, Sheng J, Wei WB, Unsworth M, Unsworth M (2007) Research of conductive structure of crust and upper mantle beneath the South-Central Tibetan Plateau. Earth Sci J China Univ Geosci 18(4):491–498. https://doi.org/10.1016/S1002-0705(08)60014-X
  • 33. Ye T, Chen XB, Yan LJ (2013) Refined techniques for data processing and two-dimensional inversion in magnetotelluric(III): using the impressing Method to construct starting model of 2D magnetotrlluric inversion. Geophysics 56(10):3596–3606. https://doi.org/10.6038/cjg20131034
  • 34. Zhang JS, He ZX, Fei AQ, Li TB, Huang XN (2008) Epicontinental mega thrust and nappe system at north segment of the western rim of the Ordos Block. Sci Geol Sin 43(2):251–281
  • 35. Zhao WJ, Zhao HQ, Guo XD, Sun ZR (2016) Magnetotelluric sounding in the Jingxin Basin, Jilin, China. Prog Geophys 31(4):1542–1549
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84e7942e-29b9-4337-85e2-3b4cc5ed9993
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.