PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of residual force in static load tests on instrumented screw displacement piles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Occurrence of the so-called residual force of an unknown value significantly disturbs interpretation of static load tests performed on piles equipped with additional measuring instruments. Screw displacement piles are the piling technology in which the residual force phenomenon is very common. Its formation mechanism is closely related to the installation method of this type of piles, which initiates generation of negative pile skin friction without any additional external factors. Knowledge of the value and distribution of a residual force (trapped in a pile shaft before starting the load test) is a necessary condition for the proper interpretation of instrumented pile test results. In this article, a clear and easy-to-use method of residual force identification, based on the analysis of shaft deformations recorded during pile unloading is presented. The method was successfully verified on two pile examples and proved to be effective and practical.
Wydawca
Rocznik
Strony
438--451
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • [1] Cooke R.W. (1979). Influence of residual installations forces on the stress transfer and settlement under working loads of jacked and bored piles in cohesive soils. Behaviour of deep foundations. American Society for Testing and Materials, 231–249.
  • [2] Fellenius B.H., Brusey W.G., Pepe F. (2000). Soil set-up, variable concrete modulus and residual load for tapered instrumented pile in sand. ASCE Specialty Conference on Performance Confirmation of Constructed Geotechnical Facilities, ASCE GSP, 94.
  • [3] Fellenius B.H. (2001). From strain measurements to load in an instrumented pile. Geotechnical New Magazine, 96, 1629–1653.
  • [4] Fellenius B.H. (2002a). Determining the Resistance Distribution in Piles. Part 1: Notes on Shift of No-Load Reading and Residual Load. Geotechnical News Magazine, 20(2), 35–38.
  • [5] Fellenius B.H. (2002b). Determining the Resistance Distribution in Piles. Part 2: Method for Determining the Residual Load. Geotechnical News Magazine, 20(3), 25–29.
  • [6] Fellenius B.H. (2002c). Determining the true distribution of load in instrumented piles. ASCE Int. Deep Foundation Congress, Orlando, USA.
  • [7] Fellenius B.H. (2015). Static tests on instrumented piles affected by residual load. Journal of the Deep Foundation Institute, 9(1), 11–20.
  • [8] Fellenius B.H. (1989). Tangent modulus of piles determined from strain data. The ASCE Geotechnical Engineering Division, Foundation Congress, 1, 500–510.
  • [9] Hayes J., Simmonds T. (2002). Interpreting strain measurements from load tests in bored piles. Conf Proc. Conference on Piling and Deep Foundations, Nice, France.
  • [10] Kania J.G., Sørensen K.K. (2018). A Static Pile Load Test on a Bored Pile Instrumented with Distributed Fibre Optic Sensors. Conf Proc. 10th International Symposium On Field Measurements In Geomechanics. Rio de Janeiro, Brazil.
  • [11] Kania J.G., Sørensen K.K., Fellenius B.H. (2020). Analysis of a Static Loading Test on an Instrumented Cased CFA Pile in Silt and Sand. International Journal of Geoengineering Case Histories, 5(3), 170–181.
  • [12] Kim M.G., Cavusoglu E., O’Neill M.W., Robert T., Yin S. (2004). Residual Load Development in ACIP piles in a Bridge Foundation. Conf Proc. GeoSupport, Orlando, USA.
  • [13] Krasiński A. (2012). Problematyka interpretacji pomiarów rozkładu siły osiowej w trzonie pala podczas próbnych obciążeń statycznych (Interpretation problems of the distribution of axial force in the piles during static load tests), Inżynieria Morska i Geotechnika, 2, 118–124.
  • [14] Lunne, T., Robertson, P.K., Powell, J.J.M. (1997). Cone penetration testing in geotechnical practice. Blackie Academic, EF Spon/Taylor & Francis Publ., New York, 1997, 312 pp.
  • [15] Maertens J., Huybrechts N. (2003). Belgian screw pile technology. Design and recent developments. Swets & Zeitlinger.
  • [16] Robertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1): 151–158.
  • [17] Sahajda K. (2015). Siły rezydualne w ocenie nośności i osiadań żelbetowych pali wbijanych (Residual forces in the assessment of bearing capacity and settlement of reinforced concrete driven piles), PhD Thesis. Warsaw University of Technology, Poland.
  • [18] Siegel T.C., McGillivray A. (2010). Interpreted residual load in an augered cast-in-place pile. Conf Proc. 35th Annual DFI Conference. Hollywood, USA.
  • [19] Sieńko R., Zych M., Bednarski Ł., Howiacki T. (2019). Strain and crack analysis within concrete members using distributed fibre optic sensors. Structural Health Monitoring, 18(5–6), 1510–1526.
  • [20] Van Impe P.O., Van Impe W.F., Seminck L. (2013). Results of an instrumented screw pile load test and connected pile-group load-settlement behavior. Journal of Geo-Engineering Sciences, 1(1), 13–36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84e39534-9dc3-432d-bd43-480da2d23a7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.