PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Banach fixed-point theorem in semilinear controllability problems – a survey

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this article is to review the existing state of art concerning the complete controllability of semilinear dynamical systems. The study focus on obtaining the sufficient conditions for the complete controllability for various systems using the Banach fixedpoint theorem. We describe the results for stochastic semilinear functional integro-differential system, stochastic partial differential equations with finite delays, semilinear functional equations, a stochastic semilinear system, a impulsive stochastic integro-differential system, semilinear stochastic impulsive systems, an impulsive neutral functional evolution integro-differential system and a nonlinear stochastic neutral impulsive system. Finally, two examples are presented.
Twórcy
autor
  • Institute of Automatic Control, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland
autor
  • Institute of Automatic Control, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland
  • Institute of Automatic Control, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Klamka, Controllability of Dynamical Systems, Kluwer Academic, Dordrecht, 1991.
  • [2] J. Klamka, “Controllability of dynamical systems - a survey”, Arch. Control Sci. 2 (3/4), 281-307 (1993).
  • [3] R.E. Kalman, “Contribution to the theory of optimal control”, Bol. Soc. Mat. Mex. 2 (5), 102-119 (1960).
  • [4] H.O. Fattorini, “Some remarks on complete controllability”, SIAM J. Control Optim. 4, 686-694 (1967).
  • [5] D.L. Russel, “Nonharmonic Fourier series in the controllability theory of distributed parameter systems”, J. Math. Anal. Appl. 18, 542-560 (1967).
  • [6] P. Muthukumar and P. Balasubramaniam, “Approximate controllability of nonlinear stochastic evolution systems with timevarying delays”, J. Franklin I. 346 (1), 65-80 (2009).
  • [7] D.N. Chalishajar, R.K. George, A.K. Nandakumaran, and F.S. Acharya, “Trajectory controllability of nonlinearintegrodifferential system”, J. Franklin I. 347 (7), 1065-1075 (2010).
  • [8] J. Huang, Z. Han, X. Cai, and L. Liu, “Control of timedelayed linear differential inclusions with stochastic disturbance”, J. Franklin I. 347 (10), 1895-1906 (2010).
  • [9] L. Tie, K. Cai, and Y. Lin, “On controllability of discrete-time bilinear systems”, J. Franklin I. 348 (5), 933-940 (2011).
  • [10] Z. Yan, “Controllability of fractional-order partial neutral functional integro-differential inclusions with infinite delay”, J. Franklin I. 348 (8), 2156-2173 (2011).
  • [11] P. Muthukumar and P. Balasubramaniam, “Approximate controllability of mixed stochastic Volterra-Fredholm type integrodifferential systems in Hilbert space”, J. Franklin I. 348 (10), 2911-2922 (2011).
  • [12] S. Yang, B. Shi, and Q. Zhang, “Complete controllability of nonlinear stochastic impulsive functional systems”, Appl. Math. Comput. 218 (9), 5543-5551 (2012).
  • [13] J. Klamka, “Controllability of dynamical systems. A survey”, Bull. Pol. Ac.: Tech. 61 (2), 335-342 (2013).
  • [14] P. Muthukumar and C. Rajivganthi, “Approximate controllability of impulsive neutral stochastic functional differential system with state-dependent delay in Hilbert spaces”, J. Control Theory Appl. 11 (3), 351-358 (2013).
  • [15] J. Klamka, A. Czornik, and M. Niezabitowski, “Stability and controllability of switched systems”, Bull. Pol. Ac.: Tech. 61 (3), 547-555 (2013).
  • [16] V. Vijayakumara, C. Ravichandranb, R. Murugesuc, and J.J. Trujillod, “Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators”, Appl. Math. Comput. 247, 152-161 (2014).
  • [17] H. Qin, J. Liu, and X. Zuo, “Controllability problem for fractional integro-differential evolution systems of mixed type with the measure of noncompactness”, J. Inequal. Appl. 292, CDROM (2014).
  • [18] Z. Yan and F. Lu, “On approximate controllability of fractional stochastic neutral integro-differential inclusions with infinite delay”, Appl. Anal. 94 (6), 1235-1258 (2015).
  • [19] J. Klamka, “Constrained exact controllability of semilinear systems”, Syst. Control Lett. 47 (2), 139-147 (2002).
  • [20] J. Klamka, “Relative controllability of nonlinear systems with distributed delays in control”, Int. J. Control 28 (2), 307-312 (1978).
  • [21] J. Klamka, “Constrained controllability of nonlinear systems”, J. Math. Anal. Appl. 201 (2), 365-374 (1996).
  • [22] J. Klamka, “Schauder’s fixed-point theorem in nonlinear controllability problems”, Control Cybern. 29 (1), 153-165 (2000).
  • [23] K. Balachandran and J. Dauer, “Controllability of nonlinear systems in Banach spaces: A survey”, J. Optimiz. Theory App. 115 (1), 7-28 (2002).
  • [24] H.X. Zhou, “Approximate controllability for a class of semilinear abstract equations”, SIAM J. Control Optim. 21 (4), 551-565 (1983).
  • [25] K. Naito and J.Y. Park, “Approximate controllability for trajectories of a delay Volterra control system”, J. Optimiz. Theory App. 61 (2), 271-279 (1989).
  • [26] R.K. George, “Approximate controllability of nonautonomous semilinear systems”, Nonlinear Anal-Theor. 24 (9), 1377-1393 (1995).
  • [27] N.I. Mahmudov and S. Zorlu, “Approximate controllability of semilinear neutral systems in Hilbert spaces”, J. App. Math. Stoch. Anal. 16 (3), 233-242 (2003).
  • [28] J. Klamka, “Constrained controllability of semilinear systems with multiple delays in control”, Bull. Pol. Ac.: Tech. 52 (1), 25-30 (2004).
  • [29] J. Klamka, “Constrained controllability of semilinear systems with delayed controls”, Bull. Pol. Ac.: Tech. 56 (4), 333-337 (2008).
  • [30] N.I. Mahmudov, “Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces”, SIAM J. Control Optim. 42 (5), 1604-1622 (2003).
  • [31] N.I. Mahmudov and M.A. McKibben, “Abstract secondorder damped McKean-Vlasov stochastic evolution equations”, Stoch. Anal. Appl. 24 (2), 303-328 (2006).
  • [32] J. Klamka, “Stochastic controllability and minimum energy control of systems with multiple delays in control”, Appl. Math. Comput. 206 (2), 704-715 (2008).
  • [33] K. Balachandran and S. Karthikeyan, “Controllability of nonlinear Ito type stochastic integro-differential systems”, J. Franklin I. 345 (4), 382-391 (2008).
  • [34] J. Klamka, “Stochastic controllability of systems with variable delay in control”, Bull. Pol. Ac.: Tech. 56 (3), 279-284 (2008).
  • [35] J. Klamka, “Constrained controllability of semilinear systems with delays”, Nonlinear Dynam. 56 (1-2), 169-177 (2009).
  • [36] J. Klamka, “Stochastic controllability of systems with multiple delays in control”, Int. J. Appl. Math. Comput. Sci. 19 (1), 39-47 (2009).
  • [37] J. Klamka and B. Sikora, “On constrained stochastic controllability of dynamical systems with multiple delays in control”, Bull. Pol. Ac.: Tech. 60 (2), 301-306 (2012).
  • [38] M.A. Dubov and B.S. Mordukhovich, “Theory of controllability of linear stochastic systems”, Diff. Equat+ 14, 1609-1612 (1978).
  • [39] J. Zabczyk, Controllability of stochastic linear systems, Syst. Control Lett. 1 (1), 25-31 (1981).
  • [40] M. Ehrhardt and W. Kliemann, “Controllability of stochastic linear systems”, Syst. Control Lett. 2 (3), 145-153 (1982).
  • [41] N.I. Mahmudov and A. Denker, “On controllability of linear stochastic systems”, Int. J. Control 73 (2), 144-151 (2000).
  • [42] N.I. Mahmudov, “Controllability of linear stochastic systems”, IEEE T. Automat. Contr. 46 (5), 724-731 (2001).
  • [43] A. Czornik and A. Świerniak, “On direct controllability of discrete time jump linear system”, J. Franklin I. 341 (6), 491-503 (2004).
  • [44] A. Czornik and A. Świerniak, “Controllability of discrete time jump linear systems”, Dynam. Cont. Dis. Ser. B 12 (2), 165-189 (2005).
  • [45] A.E. Bashirov and N.I. Mahmudov, “On concepts of controllability for linear deterministic and stochastic systems”, SIAM J. Control Optim. 37 (6), 1808-1821 (1999).
  • [46] N.I. Mahmudov, “Controllability of linear stochastic systems in Hilbert spaces”, J. Math. Anal. Appl. 259 (1), 64-82 (2001).
  • [47] R.F. Curtain and H. Zwart, An Introduction to Infinite- Dimensional Linear Systems Theory, 21, Springer Science & Business Media, 1995.
  • [48] J. Zabczyk, Mathematical Control Theory: an Introduction, Springer Science & Business Media, 2009.
  • [49] K. Naito, “Controllability of semilinear control systems dominated by the linear part”, SIAM J. Control Optim. 25 (3), 715-722 (1987).
  • [50] V.N. Do, “A note on approximate controllability of semilinear systems”, Syst. Control Lett. 12 (4), 365-371 (1989).
  • [51] M. Yamamoto and J.Y. Park, “Controllability for parabolic equations with uniformly bounded nonlinear terms”, J. Optimiz. Theory App. 66 (3), 515-532 (1990).
  • [52] S.E.Mohammed, Stochastic Functional Differential Equations, Pitman, Boston, 1984.
  • [53] T. Taniguchi, “Almost sure exponential stability for stochastic partial functional differential equations”, Stoch. Anal. Appl. 16 (5), 965-975 (1998).
  • [54] T. Taniguchi, K. Liu, and A. Truman, “Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces”, J. Differ. Equations, 181 (1), 72-91 (2002).
  • [55] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
  • [56] J. Klamka, “Stochastic controllability of linear systems with state delays”, Int. J. of Appl. Math. Comput. Sci. 17 (1), 5-13 (2007).
  • [57] N.I. Mahmudov, “On controllability of semilinear stochastic systems in Hilbert spaces”, IMA J. Math. Control I. 19 (4), 363-376 (2002).
  • [58] P. Balasubramaniam and J.P. Dauer, “Controllability of semilinear stochastic delay evolution equations in Hilbert spaces”, Int. J. Math. Math. Sci. 31 (3), 157-166 (2002).
  • [59] X.Z. Liu and A.R. Willms, “Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft”, Math. Probl. Eng. 2 (4), 277-299 (1996).
  • [60] R.K. George, A.K. Nandakumaran, and A. Arapostathis, “A note on controllability of impulsive systems”, J. Math. Anal. Appl. 241 (2), 276-283 (2000).
  • [61] S. Sivasundaram and J. Uvah, “Controllability of impulsive hybrid integro-differential systems”, Nonlinear Anal. Hybrid Syst. 2 (4), 1003-1009 (2008).
  • [62] Z.H. Guan, T.H. Qian, and X. Yu, “Controllability and observability of linear time-varying impulsive systems”, IEEE T. Circuits Syst. 49 (8), 1198-1208 (2002).
  • [63] Z.H. Guan, T.H. Qian, and X.H. Yu, “On controllability and observability for a class of impulsive systems”, Syst. Control Lett. 47 (3), 247-257 (2002).
  • [64] S. Karthikeyan and K. Balachandran, “Controllability of nonlinear stochastic neutral impulsive systems”, Nonlinear Anal. Hybrid Syst. 3 (3), 266-276 (2009).
  • [65] Y.K. Chang, “Controllability of impulsive functional differential systems with infinite delay in Banach spaces”, Chaos Soliton. Fract. 33 (5), 1601-1609 (2007).
  • [66] B. Radhakrishnan and K. Balachandran, “Controllability of impulsive neutral functional evolution integro-differential systems with infinite delay”, Nonlinear Anal. Hybrid Syst. 5 (4), 655-670 (2011).
  • [67] L. Shen, J. Shi, and J. Sun, “Complete controllability of impulsive stochastic integro-differential systems”, Automatica 46 (6), 1068-1073 (2010).
  • [68] G.M. Xie and L. Wang, “Necessary and sufficient conditions for controllability and observability of switched impulsive control systems”, IEEE T. Automat. Contr. 49 (6), 960-966 (2004).
  • [69] M.L. Li, M.S. Wang, and F.Q. Zhang, “Controllability of impulsive functional differential systems in Banach spaces”, Chaos Soliton. Fract. 29 (1), 175-181 (2006).
  • [70] B. Liu and H.J. Marquez, “Controllability and observability for a class of controlled switching impulsive systems”, IEEE T. Automat. Contr. 53 (10), 2360-2366 (2008).
  • [71] R. Sakthivel, N.I. Mahmudov, and J.H. Kim, “On controllability of second order nonlinear impulsive differential systems”, Nonlinear Anal-Theor. 71 (1-2), 45-52 (2009).
  • [72] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
  • [73] K. Balachandran and S. Karthikeyan, “Controllability of stochastic integro-differential systems”, Int. J. Control 80 (3), 486-491 (2007).
  • [74] K. Balachandran, J.-H. Kim, and S. Karthikeyan, “Controllability of semilinear stochastic integro-differential equations”, Kybernetika 43, 31-44 (2007).
  • [75] R. Subalakshmi, K. Balachandran, and J.Y. Park, “Controllability of semilinear stochastic functional integro-differential systems in Hilbert spaces”, Nonlinear Anal. Hybrid Syst. 3 (1), 39-50 (2009).
  • [76] J.P. Dauer and N.I. Mahmudov, “Controllability of stochastic semilinear functional differential equations in Hilbert spaces”, J. Math. Anal. Appl. 290 (2), 373-394 (2004).
  • [77] J.P. Dauer and N.I. Mahmudov, “Approximate controllability of semilinear functional equations in Hilbert spaces”, J. Math. Anal. Appl. 273 (2), 310-327 (2002).
  • [78] N.I. Mahmudov, “Controllability of semilinear stochastic systems in Hilbert spaces”, J. Math. Anal. Appl. 288 (1), 197-211 (2003).
  • [79] X. Dai and F. Yang, “Complete controllability of impulsive stochastic integro-differential systems in Hilbert space”, Abstr. Appl. Anal. ID 783098, CD-ROM (2013).
  • [80] X.S. Dai and F.Q. Deng, “Controllability of semilinear stochastic impulsive systems in Hilbert spaces”, Proc. Int. Con. Machine Learning and Cybernetics 6, 3657-3662 (2009).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84e1172a-fb07-40a3-bf82-49dc50cbf63f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.