PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and testing of a passive Walking Assist Exoskeleton

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ability to walk is perhaps the most common indicator of mobility and independence. Regrettably, a large portion of the population is experiencing a loss in mobility due to aging and/or chronic health conditions. There is thus an urgent need to develop systems that would help preserve mobility for individuals in need. One promising solution to this growing problem is Walking Assist Exoskeletons. Current devices mostly rely on powered systems to provide walk assist by applying complementary torques about lower limb joints. Whereas these exoskeletons have achieved technological breakthroughs, they are not without limitations. In response, developments of passive alternatives are now emerging and have demonstrated the potential for simple, cost-effective devices. Aligned with this progress, the following study proposes the development of a passive exoskeleton that enhances mobility during stance and walking. This is achieved through an unpowered seat mechanism that produces an upward force on the pelvis of the user. Two analytical models are developed to predict its behavior, by evaluating the effect of increasing the stiffness of the mechanism, as well as predicting device kinematics and its resulting assistance throughout a gait cycle. A human-scale proof of concept prototype was fabricated and tested using motion capture equipment and load cells. The results validated the proposed design, which provided an upward stance force between 9.41% and 26.18% of body weight for six levels of spring stiffness. The exoskeleton also provided an upward peak walking force between 14.02% and 27.52% of body weight for five levels of spring stiffness.
Twórcy
  • Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada
autor
  • Department of Mechanical Engineering, University of Ottawa, 161 Louis-Pasteur, Colonel By Hall, Ottawa, ON, Canada K1N 6N5
Bibliografia
  • [1] Newman P, Matan A. Human mobility and human health. Curr Opin Environ Sustain 2012;4(4):420–6.
  • [2] S.C. Government of Canada. The daily-population projections: Canada, provinces and territories, 2013 to 2063; 2014, Available from http://www.statcan.gc.ca/daily-quotidien/140917/ dq140917a-eng.htm./ [accessed on 14.04.2016].
  • [3] Browning RC, Kram R. Energetic cost and preferred speed of walking in obese vs. normal weight women. Obes Res 2005;13(5):891–9.
  • [4] DeLany JP, Kelley DE, Hames KC, Jakicic JM, Goodpaster BH. High energy expenditure masks low physical activity in obesity. Int J Obes 2013;37(7):1006–11.
  • [5] McDonough CM, Jette AM. The contribution of osteoarthritis to functional limitations and disability. Clin Geriatr Med 2010;26(3):387–99.
  • [6] Gregg EW, Engelgau MM, Narayan V. Complications of diabetes in elderly people. BMJ 2002;325(7370):916–7.
  • [7] Mendes R, Sousa N, Themudo-Barata J, Reis V. Impact of a community-based exercise programme on physical fitness in middle-aged and older patients with type 2 diabetes. Gac Sanit 2016;30(3):215–20.
  • [8] Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 2015;522(7555):212–5.
  • [9] van Dijk W, der Kooij HV. XPED2: a passive exoskeleton with artificial tendons. IEEE Robot Autom Mag 2014;21(4):56–61.
  • [10] van den Bogert AJ. Exotendons for assistance of human locomotion. Biomed Eng OnLine 2003;2:17.
  • [11] Krut S, Benoit M, Dombre E, Pierrot F. MoonWalker, a lower limb exoskeleton able to sustain bodyweight using a passive force balancer. 2010 IEEE International Conference on Robotics and Automation (ICRA). 2010. pp. 2215–20.
  • [12] Kohei M. MoonWalker, a lower limb exoskeleton able to sustain bodyweight using a passive force balancer; 2010.
  • [13] Walsh CJ, Endo K, Herr H. A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Humanoid Robot 2007;4(3):487–506.
  • [14] Lee KM, Wang D. Design analysis of a passive weight- support lower-extremity-exoskeleton with compliant knee-joint. 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015. pp. 5572–7.
  • [15] Martin L. Exoskeleton technologies;Available from https://www.lockheedmartin.com/us/products/ exoskeleton.html] 2017.
  • [16] Agrawal S, Banala S, Fattah A. A gravity balancing passive exoskeleton for the human leg. Robotics Science and Systems II; 2006.
  • [17] Lovrenovic Z, Doumit M. Review and analysis of recent development of lower extremity exoskeletons for walking assist. 2016 IEEE EMBS International Student Conference (ISC). 2016. pp. 1–4.
  • [18] Chen B, et al. Recent developments and challenges of lower extremity exoskeletons. J Orthop Transl 2016;5:26–37.
  • [19] Kazerooni H. A review of the exoskeleton and human augmentation technology; 2008;1539–47.
  • [20] Asimo Honda. Body weight support assist;Available from http://asimo.honda.com/innovations/feature/body-weight- support-assist/ 2017.
  • [21] Ikeuchi Y, Ashihara J, Hiki Y, Kudoh H, Noda T. Walking assist device with bodyweight support system. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2009. pp. 4073–9.
  • [22] Honda A. Stride management assist;Available from http://asimo.honda.com/innovations/feature/stride- management-assist/ 2017.
  • [23] Kitatani R, Ohata K, Takahashi H, Shibuta S, Hashiguchi Y, Yamakami N. Reduction in energy expenditure during walking using an automated stride assistance device in healthy young adults. Arch Phys Med Rehabil Nov 2014;95 (11):2128–33.
  • [24] Buesing C, et al. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J NeuroEngineering Rehabil 2015;12:69.
  • [25] Guizzo E, Goldstein H. The rise of the body bots [robotic exoskeletons]. IEEE Spectr 2005;42(10):50–6.
  • [26] Chu A, Kazerooni H, Zoss A. On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX). Proceedings of the 2005 IEEE International Conference on Robotics and Automation. ICRA; 2005. p. 4345–52.
  • [27] Veneman JF, Ekkelenkamp R, Kruidhof R, van der Helm FCT, van der Kooij H. Design of a series elastic- and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training. 9th International Conference on Rehabilitation Robotics. ICORR. 2005. pp. 496–9.
  • [29] Meuleman J, van Asseldonk E, van Oort G, Rietman J, van der Kooij H. LOPES II #x2014; design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE Trans Neural Syst Rehabil Eng 2016;PP (99):1.
  • [30] Strickland E. Good-bye, wheelchair. IEEE Spectr 2012;49 (1):30–2.
  • [31] Winter DA. Biomechanics and motor control of human movement. Hoboken, New Jersey: John Wiley & Sons; 2009.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
PL
W opisie bibliogr. brak poz. nr. 28
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84dc214f-19b7-43d0-ae16-e9623865bdbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.