PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Calculation of the Thermochemical Parameters of High-Temperature Pyrolants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermochemical properties of high-temperature pyrolants were studied. Two reactive oxidizers, potassium nitrate (KNO3) and potassium perchlorate (KClO4), and two highly energetic fuels, boron (B) and zirconium (Zr), were considered. The combustion temperatures and thermochemical parameters of B/KNO3, Zr/KNO3, B/KClO4, and Zr/KClO4 pyrotechnic mixtures were investigated via thermochemical calculations using a modified dedicated calculation program package that enables estimation of the presence and concentrations of chemical compounds in condensed (solid or liquid) phases in the combustion products. The relevancy between heat generation and the quantity of gaseous and condensed products was calculated. In addition, changes in the thermochemical parameters of the pyrotechnic mixtures on increasing the combustion pressure from 0.4 to 4.0 MPa were examined. The use of zirconium led to remarkably higher combustion product temperatures compared with other metallic fuels.
Rocznik
Strony
583--595
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Military University of Technology, 2 gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
  • Military University of Technology, 2 gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
Bibliografia
  • [1] Price, E.W.; Bradley, H.; Dehority, G.L.; Ibiricu, M.M. Theory of Ignition of Solid Propellants. AIAA J. 1966, 7(4): 1153-1181.
  • [2] Shannon, L.J. Composite Solid-Propellant Ignition by Radiant Energy. AIAA J. 1968, 8(2): 346-353.
  • [3] Shannon, L.J.; Deverall, L.I. A Model of Solid-Propellant Ignition in a Neutral Environment. AIAA J. 1969, 7(3): 497-502.
  • [4] Bradley, H.H.; Williams, F.A. Theory of Radiant and Hypergolic Ignition of Solid Propellants. Combustion Science and Technology. 1970, 2(1): 41-52.
  • [5] Hermance, C.E.; Kumar, R.K. Gas Phase Ignition Theory for Homogeneous Propellants under Shock Tube Conditions. AIAA J. 1970, 8(9): 1551-1558.
  • [6] Linan, A.; Williams, F.A. Theory of Ignition of a Reactive Solid by Constant Energy Flux. Combust Sci. Technol. 1971, 3(2): 91-98.
  • [7] Kumar, R.K.; Hermance, C.E. Gas Phase Ignition Theory of a Heterogeneous Solid Propellant Exposed to a Hot Oxidizing Gas. 1972, 4(1): 191-196.
  • [8] Kashiwagi, T. A Radiative Ignition Model of a Solid Fuel. Combust Sci. Technol. 1974, 8(5-6): 225-236.
  • [9] Khan, A.; Malik, A.Q.; Lodhi, Z.H. Development and Study of High Energy Igniter/Booster Pyrotechnic Compositions for Impulse Cartridges. Cent. Eur. J. Energ. Mater. 2017, 14(4): 933-951.
  • [10] Solid Rocket Motor Igniter. (Keller, Jr, R.B., Ed.) 1971, NASA SP-8051.
  • [11] Robertson, W.E. Igniter Material Considerations and Applications. AIAA Paper 1972, 72: 1195.
  • [12] Wolszakiewicz, T.; Walenta, Z.A. Measurement of Energy Emitted by Pyrogenic Tablets Used for Ignition of Solid Rocket Propellants. Cent. Eur. J. Energ. Mater. 2015, 12(2): 359-375.
  • [13] Kubota, N. Propellants and Explosives. Wiley-VCH Verlag GmbH, Weinheim, 2015; ISBN 9783527331789.
  • [14] Lee, J.S.; Hsu, C.K. The Effect of Different Zirconium on Thermal Behaviors for Zr/KClO4 Priming Composition. Thermochim. Acta 2001, 367: 375-379.
  • [15] Klapötke, T.M. Chemistry of High-Energy Materials. Walter de Gruyter, Berlin, 2012; ISBN 3110273586.
  • [16] Kuwahara, T.; Tohara, C. Ignition Characteristics of Zr/BaCrO4 Pyrolant. Propellants Explos. Pyrotech. 2002, 27(5): 284-289.
  • [17] Mader, C.L. Numerical Modeling of Detonations. Berkeley, Univ. of California, 1979; ISBN-10 0520036557.
  • [18] Papliński, A. Implementation of the Steepest Descent Method to Evaluation of Equilibrium Composition of Reactive Mixtures Containing Components in Condensed Phases. Cent. Eur. J. Energ. Mater. 2011, 1-2(4): 135-150.
  • [19] Dantzig, G.B. Linear Programming and Extensions. Priceton Univ. Press, 1965; ISBN-10 0691059136
  • [20] Yetter, R.A.; Rabitz, H.; Dryer, F.L.; Kolb, C.E. Kinetics of High-Temperature B/O/H/C Chemistry. Combust. Flame 1991, 83(1-2): 43-62.
  • [21] Glushko, V.P. Thermodynamic Properties of Individual Chemical Substances (in Russian, ed. transl.), Vol. I-IV, Nauka, Moscow, 1978-1982.
  • [22] Chase, M.W. NIST-JANAF Thermochemical Tables. J. Phys. Chem. Ref. Data, 1998, Monograph No. 9.
  • [23] Koch, E.-Ch.; Hahma, A.; Klapötke, T.M.; Radies, H. Metal-Fluorocarbon Pyrolants: XI. Propellants Explos. Pyrotech. 2010, 35(3): 248-253.
  • [24] Zygmunt, B. Explosive Properties of the Mg-Al/PTFE Composition. Chin. J. Energ. Mater. (Hanneng Cailiao) 2007, 15(6): 592-596.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84d6e695-511a-4329-b4c9-2ef1fd192e92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.