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Abstract: The thermochemical properties of high-temperature pyrolants were
studied. Two reactive oxidizers, potassium nitrate (KNO;) and potassium
perchlorate (KCl1O,), and two highly energetic fuels, boron (B) and zirconium (Zr),
were considered. The combustion temperatures and thermochemical parameters of B/
KNOs, Zt/KNOs;, B/KClO4, and Z1r/KClO, pyrotechnic mixtures were investigated
via thermochemical calculations using a modified dedicated calculation program
package that enables estimation of the presence and concentrations of chemical
compounds in condensed (solid or liquid) phases in the combustion products.
The relevancy between heat generation and the quantity of gaseous and condensed
products was calculated. In addition, changes in the thermochemical parameters
of the pyrotechnic mixtures on increasing the combustion pressure from 0.4
to 4.0 MPa were examined. The use of zirconium led to remarkably higher
combustion product temperatures compared with other metallic fuels.

Keywords: high-temperature pyrolants, thermochemical parameters,
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Symbols and abbreviations

T temperature [K]
p pressure [Pa]
g total number of compounds in gaseous phase

I total number of compounds in condensed (liquid or solid) phases
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m number of elements present in the mixture

A:Hi(298.15K) formation enthalpy of species “i” at 298.15 K

0. heat of combustion

Br oxygen balance [%]

PR total number of moles of gaseous components

V as total volume of substances in gaseous phase (per unit mass)

1 Introduction

Igniters fulfill an essential function in rocket motors and pyrotechnic devices.
Their purpose is to initiate the stable combustion of a propelling charge situated
inside arocket chamber equipped with one or more nozzles of specified geometrical
dimensions. During the stable operation of a rocket motor, a thermodynamic
balance exists between the high-temperature gaseous products from the propellant
and their outflow through the nozzle. Owing to this balance, the pressure inside
a rocket chamber is stable or changes slowly, indicating the correct design
and performance of the entire propulsion system. Any mechanical defects
in the propellant charge or physical or chemical instabilities of the propellant
can cause unstable combustion, which usually results in explosion of the rocket
motor [1-5]. An unstable combustion stage also occurs at the moment of ignition
of the propelling charge by the igniter. Following ignition, the pressure inside
the rocket chamber increases from atmospheric level to the nominal value
and stabilizes in a very short time, which is of the order of tenths of a second.

Traditional igniters consist of a precisely determined quantity of granular
black powder, which serves as a source of hot gases that initiate combustion
of the exposed surfaces of the propelling charge. The combustion products
of black powder also include significant amounts of high-temperature solid
particles, which initiate the combustion of the propellant more efficiently than
the hot gases. The mass of the initiation charge has been verified experimentally
for the entire range of operation temperatures. This range is typically from —50
to +70 °C. The temperature exerts a significant influence on the combustion
kinetics of both the black powder in the igniter and the propellant (especially
double-base propellants), which has motivated the search for other methods
for igniting military rocket motors [6-9].

Five decades ago a new method for igniting the propelling charges in rocket
motors was proposed [10, 11]. This method relies on replacing the black powder
with a low-gaseous pyrotechnic composition (pyrolant) possessing a very
high heat of combustion. The temperature of the solid combustion products
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from these pyrolants typically reaches 3000 K [12-17]. This eliminates some
of the hazards associated with traditional igniters, such as the additional increase
in the pressure inside the rocket chamber due to the gases from the black
powder combustion. Consequently, the pressure increase inside the rocket
chamber originates mainly from the combustion of the propellant, which reduces
the probability of the pressure exceeding the safe limit. The very high temperature
of the solid combustion products of pyrotechnic mixtures ensures high
ignition efficiency for the exposed surfaces of the propellant over a wide range
of exploitation temperatures.

In the present study, the combustion products of two types of pyrotechnic
mixtures with various compositions were investigated. Two reactive oxidizers,
potassium nitrate (KNO;) and potassium perchlorate (KClO4), and two high-
energy fuels, boron (B) and zirconium (Zr), were considered. The combustion
temperature and thermochemical parameters of B/KNO;, Zr/KNO;, B/KCIOs,,
and Zr/KClO,4 mixtures were investigated. An improved method for identifying
the presence and concentration of combustion products in condensed phases
was adopted. In addition, in order to evaluate the influence of pressure on the
expansion of the combustion products, the variation of the combustion energy,
temperature, and concentrations of the combustion products in the gaseous
and condensed phases on increasing the combustion pressure from 0.4 to 4 MPa
was analyzed.

2 Method of Thermochemical Calculations

To estimate the chemical compositions and thermochemical parameters
of the combustion products of the pyrotechnic mixtures, a method based on
the principle of minimization of the thermodynamic potential of reactive
mixtures was applied [18, 19]. The base set of equations designed to estimate
the sought for concentrations of individual chemical substances that was
presented in the monograph by Mader [18] is comprised of (n, + 1y + m + 1)
equations, where n, — number of substances in the gaseous phase; n, — number
of substances in the condensed, solid or liquid, phases; and m — number
of elements. The improvements proposed in [19] consist of the derivation
of'a reduced set of (n; + m + 1) equations. The use of this reduced set simplifies
the evaluation of the final composition of the reacting mixture. By solving
a set of (n, + ny+m + 1) equations, a multiplication of relatively small numbers
corresponding to the gaseous species that may be present in even trace
concentrations is necessary. When the reduced set is solved first, the concentrations
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of n, gaseous substances are evaluated in a simple manner [19, 20]. The inclusion
into the evaluations of substances that do not contribute practically to the final
composition and thermodynamic parameters may be of importance for an analysis
of the possible presence of toxic substances in the combustion products.
That may be of significance in the explosion of huge charges, e.g. in rock blasting
or at shooting-ranges where same kind of munition is repeatedly employed
for extended periods of time.

The possible presence of the following chemical substances that may appear
in the condensed phases was considered: By, B2O3), BN, Ks), KOz, KoOg),
K305, KBOy), KClys), Zrs), and ZrO,). The concentrations of the corresponding
gaseous phase components ie. B(g), Bz(g), B203(g), BN(g), K(g), Kz(g), KOz(g),
K10, KsOsg), KBOy), KClg), Zr(y) and ZrOx,) in the final composition of the
combustion products was also examined. An extended list of chemical substances,
such as BO, BOQ, BzO, BzOz, BCl, BClz, BC13, B2C14, ClBO, ClzBO, and C13B303
that may influence the combustion features of boron containing compounds [21]
was included in the evaluations. Potassium compounds that are to be formed
in the gaseous phase, such as KO, K,Cl,, KNO,, and KNOs, together with routine
oxygen and nitrogen containing components, O, O,, O;, N, N,, NO, N,O, NO,,
N20s, N>,Os, and N,Os were accounted for. The thermodynamic characteristics
of the individual chemical substances were taken from thermodynamic
tables [22, 23].

3 Boron-containing Compositions

3.1 B/KNO; compositions

The stoichiometric mixture of B/KNO; contains 151.26 g/kg of boron.
Therefore, boron contents from 100 to 325 g/kg were considered. The dependence
of the thermochemical parameters and boron azide (BN) content of the
combustion products on the boron content of B/KNO; pyrolants is presented
in Figure 1. The dependence of the available combustion volume of the studied
pyrolants may occur at the quite low pressure of 0.4 MPa or at the higher
pressure of 4.0 MPa. The results obtained for a pressure of 4.0 MPa are presented
in Figure 2.
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Figure 1. Dependence of the combustion energy, temperature, and quantities
of gaseous and condensed products on the boron content during
combustion of B/KNO; compositions at 0.4 MPa
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Figure 2. Dependence of the combustion energy, temperature, and quantities

of gaseous and condensed products on the boron content during
combustion of B/KNO; compositions at 4.0 MPa

The volume available to the combustion products decreases with increasing
pressure. This promotes an increase in the proportion of products formed
in the condensed phases. The formation of condensed-phase products,
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such as BNy in the case of B/KNO; mixtures, causes increases in temperature and
the heat of combustion (Q.). Concomitantly, the volume of the gaseous products
decreases (Figure 2). These desirable effects were observed for boron contents
from 125 to 275 g/kg. In Figures 1 and 2, two particular regions of beneficial
boron contents can be discerned. In comparison to the stoichiometric composition,
slightly higher values of the heat of combustion were observed for boron contents
in the range 125-275 g/kg. In this region, significant changes in the chemical
composition of the products occurred.

The consumption of nitrogen and boron due to BN, formation leads
to important changes in the final composition of the combustion products.
It should be noted that B/KINO; mixtures with boron contents in the aforementioned
range, where increases in the temperature and heat of combustion occur,
are suitable for use as igniters. In both Figures 1 and 2, the heat of combustion
vs. boron content plot displayed a second maximum at a boron content of 250-
270 g/kg. This corresponds to a weaker dependence of temperature at pressures
of both 0.4 and 4.0 MPa.

3.2 B/KCIO4 compositions
The stoichiometric mixture of B/KClO, contains 172.24 g/kg of boron. Therefore,
boron contents from 100 to 275 g/kg were considered. The dependence
of the thermochemical parameters of the combustion products on the boron
content of B/KCIO, pyrolants at pressures of 0.4 and 4.0 MPa is presented
in Figures 3 and 4, respectively.

Combustion of B/KCI10O4 mixtures does not produce products
in the condensed phases. The melting point of KCl is 1044 K, but over 1800 K
it sublimes. The maximal values of energy and temperature of the combustion
products are attained in the vicinity of the stoichiometric composition.
However, as by combustion of near-stoichiometry compositions multi-atomic
molecules such as B,0,, B,O;, KBO, are formed in significant amounts,
attaining of maximal combustion parameters is accompanied with reduction of the
total molar numbers of products in the gaseous phase. An increase in combustion
pressure from 0.4 to 4.0 MPa leads to a rise in temperature of the combustion
products of B/KCIO, pyrolants by approximately of 300 °C.
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4 Zirconium-containing Compositions

4.1 Zr/KNO; compositions

The stoichiometric mixture of Zr/KNO; contains 568.37 g/kg zirconium.
Therefore, zirconium contents from 350 to 750 g/kg were considered.
The dependence of the thermochemical parameters at pressures of 0.4
and 4.0 MPa is presented in Figures 5 and 6, respectively.
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Figure 5. Dependence of the combustion energy, temperature, and quantities
of gaseous and condensed products on the zirconium content during
combustion of Zr/KNO; compositions at 0.4 MPa
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Figure 6. Dependence of the combustion energy, temperature, and quantities
of gaseous and condensed products on the zirconium content during
combustion of Zr/KNO; compositions at 4.0 MPa
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The combustion of zirconium containing compositions is dominated
by features derived from zirconium oxide (ZrO,) formation. Optimal parameters
are attained at Zr concentrations close to and slightly exceeding the stoichiometric
mixture. The high heat of formation of ZrOys results in temperatures
and combustion energies that distinctly surpass those of mixtures based on boron.
However, due to the relatively larger atomic mass of zirconium, the amount
of gaseous products per unit mass is considerably smaller than in the case of boron
containing mixtures. For practical use, Zr/KNO; mixtures with zirconium
contents from 500 to even 750 g/kg may be recommended.

4.2 Zr/KClO4 compositions

The stoichiometric mixture of Zr/KClO, contains 530.03 g/kg zirconium.
Therefore, zirconium contents from 350 to 750 g/kg were considered.
The dependence of the thermochemical parameters at pressures of 0.4
and 4.0 MPa is presented in Figures 7 and 8, respectively.
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Figure 7. Dependence of the combustion energy, temperature, and quantities
of gaseous and condensed products on the zirconium content during
combustion of Zr/KClO, compositions at 0.4 MPa

The combustion temperature, as well as the combustion energy of Zr/
KCl104 mixtures exceed the values obtained for Zr/KNO; compositions
and were the highest of the pyrolants studied. In particular, the combustion
temperature for zirconium contents of 50-63% at a pressure of 4.0 MPa
exceeds 5000 K.
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An important factor contributing to the rise in the combustion temperature
of Zr/KClO4 mixtures, in comparison to Zr/KNO; compositions, is the formation
of potassium chloride (KCl)) with its negative enthalpy of formation.
Another important feature of the combustion of Zr/KCIO, mixtures
is the significant increase in temperature that occurs on increasing the combustion
pressure. An increase of pressure from 0.4 to 4.0 MPa led to a temperature rise
of approximately 700 °C. The alteration in the chemical composition of Zr/KCIO4
combustion products on increasing the pressure from 0.4 to 4.0 MPa is listed
in Table 1. The species listed are those for which the changes are greater than
0.1 mol/kg or exceed 10%.
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Figure 8. Dependence of the combustion energy, temperature, and quantities
of gaseous and condensed products on the zirconium content during
combustion of Zr/KClO, compositions at 4.0 MPa

The change in molar numbers is denoted by the symbol Ay, while the percentage
alteration is listed in the final column. A noticeable alteration of concentrations
of several components of combustion products may be observed. In particular,
the enlargement of solid zirconium oxide (ZrOx,) content contributes to increase
of temperature and combustion energy. Besides, a lowering of the total amount
of products in the gaseous phase (Xy,®) occurs.
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Table 1 Alteration of molar concentrations of illustrative components
in the combustion products of a Zr/KCIO, mixture caused
by the increase in pressure from 0.4 to 4 MPa

. AH(298.15 Y|

Species [kg/mol] ) [molJ/}kg] [7]
0] 249.2 -0.276 -17.4
Cl 121.3 -0.419 -22.2
K 89.0 —0.489 —26.6
KCl -214.6 0.411 30.3
710y 83.9 —0.174 -19.9
ZI‘Oz(g) —318.3 -0.225 -35.2
71Oy —1100.3 0.395 8.7
Ty — -1.071 -12.9

5 Conclusions

Thermochemical calculations were performed using a modified program package
that enables easier estimation of the chemical composition of the condensed
(solid or liquid) phases of the combustion products. It should be stressed
that in the modified method the reduced set of equations consists of six
to nine equations, depending on the number of species considered in the condensed
phases. Calculations were performed to evaluate the influence of the metallic fuel
content in the pyrolants on the heat of combustion, temperature of the combustion
products, and volume of gaseous products over a wide range of chemical
compositions of the pyrotechnic mixtures.

The thermochemical properties were calculated for four types of highly
energetic low-gaseous pyrotechnic mixtures. Two of the most common inorganic
reactive oxidizers, potassium nitrate (KNOs) and potassium perchlorate (KC1Oy),
and two highly energetic fuels, boron (B) and zirconium (Zr), were considered
in this study. Nevertheless, the developed calculation method is also
applicable to determining the thermochemical parameters and composition
of combustion products for any other combination of oxidizer and fuel forming
a pyrotechnic mixture.

Changes in the combustion parameters of the examined low-gaseous
pyrotechnic mixtures were observed upon increasing the combustion pressure
from 0.4 to 4.0 MPa. For example, increasing the pressure from 0.4 to 4.0 MPa
for the Zr/KClO, pyrolants led to a significant increase (approximately 700 °C)
in the temperature of the combustion products. At a pressure of 4.0 MPa,

Copyright © 2019 Lukasiewicz Research Network — Institute of Industrial Organic Chemistry, Poland



594 B. Zygmunt, A. Paplinski

the calculated combustion temperature of the Zr/KClO, pyrolants exceeded
5000 K over a wide range of zirconium contents (50-63%). The combustion
temperatures of the studied pyrolants, based on oxygen-containing oxidizers,
were significantly higher than those reported for non-oxygen-containing
pyrolants, such as the AI/Mg/PTFE composition [24, 25].

The results described herein are expected to prove valuable for the selection
of suitable chemical compositions for use in igniters for rocket motors
and pyrotechnic devices. The practical conclusion that emerges from these
calculations is the advisability of using igniters based on pyrolants that burn
at higher pressures to achieve reliable ignition of rocket motors.
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